
 

1 | P a g e  
 

 

 

 

 

MAJOR PROJECT (BMN610) 

 

 

ALGORITHMIC TRADING 

 

 

 

 

Submitted to: 

Professor Manu Gupta 

Department of Management Studies, 

Indian Institute of Technology (IIT) Roorkee 

 

 

 

Prepared By: 

Sachin Sharma  

21810058 

 

 

Date of Submission: 

May 01st, 2023 

 



 

2 | P a g e  
 

ABSTRACT 

 

Algorithmic trading is a computer-based approach to trading that uses pre-programmed rules 

and instructions to analyze market data, identify trading opportunities, and automatically 

execute trades with little to no human intervention. This project focuses on developing and 

testing a trading algorithm that aims to generate consistent profits using a straddle selling 

strategy. 

The straddle selling strategy involves selling both a call and a put option on the same 

underlying asset with the same expiration date and strike price. The algorithm developed in 

this project uses this strategy to identify the best opportunities to execute trades based on 

pre-programmed rules and instructions. The algorithm was developed using the Python 

programming language and utilizes broker APIs and data from a WebSocket feed to execute 

trades in real time. 

The primary objective of the algorithm developed in this project is to consistently outperform 

the general market returns by at least two times by generating profits of 3-5% per month 

under standard volatility conditions and decent market premiums. The algorithm was tested 

and tweaked in March to optimize its performance under current low vix conditions, and the 

final forward testing of the strategy was carried out for the entire month of April using 

BankNifty derivatives. 

The results of the forward testing demonstrated that the performance targets were achieved, 

and the algorithm has high growth prospects in future years to come. Risk management 

techniques such as stop-loss orders were implemented to ensure the safety of the trading 

algorithm. Additionally, live logs and telegram updates were integrated into the algorithm to 

provide real-time updates from anywhere, enabling traders to monitor the trading activity 

remotely. 

In conclusion, this project demonstrates the potential of algorithmic trading to generate 

consistent profits with minimal human intervention. The straddle selling strategy, when 

combined with algorithmic trading, has the potential to outperform the general market 

returns and generate significant profits. While algorithmic trading has its limitations and risks, 

careful development and testing of trading algorithms can minimize the risk of unexpected 

losses. 

  



 

3 | P a g e  
 

CONTENTS 

 

 

1. Introduction 

2. History, need and benefits of Algo Trading 

3. Straddle 

4. Technology Used 

5. Data Connection, broker details 

6. Telegram Connection 

7. Modules Used 

8. Strategy Explanation 

9. Performance in Live Market 

10. Future Prospects 

  



 

4 | P a g e  
 

Introduction 

 

In today's fast-paced and ever-changing financial markets, traders and investors are 

constantly looking for ways to gain an edge over their competitors. One such way is through 

the use of algorithmic trading, commonly referred to as Algo Trading. Algo trading involves 

the use of computer programs to execute trades automatically based on predefined rules and 

conditions. 

Algo trading has become an integral part of financial markets, and it is used by both individual 

traders and institutional investors. It is estimated that more than 50% of all trades in the US 

equity markets are executed through algorithmic trading. This technology has revolutionized 

the way financial markets operate, providing traders and investors with the tools they need 

to navigate the complex and volatile markets of today. 

The use of Algo Trading has been steadily increasing over the years, and it is now considered 

to be one of the most popular methods of trading in financial markets. This is due to the many 

benefits it offers, including speed and efficiency, consistency, backtesting, scalability, and 

cost-effectiveness. 

One of the key advantages of Algo Trading is its speed and efficiency. Algo trading enables 

traders to execute trades at lightning-fast speeds, allowing them to take advantage of market 

movements quickly. This helps to reduce the risk of slippage, which occurs when prices 

change between the time a trade is placed and executed. The speed and efficiency of Algo 

Trading are essential in today's markets, where a delay of even a few seconds can mean the 

difference between profit and loss. 

Consistency is another key benefit of Algo Trading. Algo trading takes the emotion out of 

trading, ensuring that trades are executed based on predefined rules and conditions. This 

helps to eliminate the human error that can occur with manual trading. By removing the 

emotional aspect of trading, Algo Trading helps traders to stick to their strategies and make 

more consistent decisions. 

Backtesting is another important benefit of Algo Trading. Algo trading allows traders to test 

their strategies using historical market data to determine their effectiveness. This helps 

traders to refine their strategies and optimize their trading systems. By backtesting their 

strategies, traders can identify potential flaws and make improvements before deploying 

them in real-time trading. 

Scalability is another important advantage of Algo Trading. Algo trading allows traders to 

execute trades across multiple markets and instruments simultaneously, making it easier to 

diversify their portfolios and manage risk. This is especially important for institutional 

investors, who need to manage large portfolios across multiple markets. 



 

5 | P a g e  
 

Finally, Algo Trading can be more cost-effective than traditional trading methods, as it 

eliminates the need for human traders and reduces the cost of executing trades. This can be 

especially beneficial for individual traders who may not have the resources to hire a team of 

traders to execute trades on their behalf. 

In conclusion, Algo Trading has become an essential tool for traders and investors in today's 

financial markets. Its speed and efficiency, consistency, backtesting, scalability, and cost-

effectiveness have made it a preferred method of trading for many market participants. As 

technology continues to evolve, we can expect to see even more sophisticated algorithmic 

trading systems in the future, further increasing the speed and efficiency of trading. 

  



 

6 | P a g e  
 

History, need and Benefits of Algo Trading. 

 

Algo Trading, also known as algorithmic trading, has a long and fascinating history that spans 

several decades. It has evolved from its early beginnings as a tool for program trading in the 

1970s to its current state as a dominant force in financial markets worldwide. 

In the early days of Algo Trading, computers were used to help trading desks make informed 

decisions. However, these early systems were relatively simple and limited in their 

capabilities. They were primarily used for program trading, which involved the simultaneous 

buying and selling of a large basket of stocks to take advantage of price discrepancies between 

them. 

In the 1990s, the rise of electronic trading platforms and the availability of real-time market 

data led to a significant increase in the use of Algo Trading. These advances allowed traders 

to develop more complex trading algorithms that could analyze vast amounts of data in real 

time and execute trades automatically based on predefined rules and conditions. 

In the early 2000s, the development of high-frequency trading (HFT) algorithms took Algo 

Trading to a new level. HFT is a form of algorithmic trading that involves the use of complex 

algorithms to execute trades in microseconds. These algorithms use a variety of techniques, 

such as statistical arbitrage, to identify and exploit small price discrepancies in the markets. 

The use of HFT has grown rapidly in recent years, and it is now estimated that over 70% of all 

trades in US equity markets are executed through algorithmic trading, with a significant 

portion of those trades being executed by HFT algorithms. HFT has been the subject of much 

controversy and debate, with some critics arguing that it has created an uneven playing field 

for retail investors and small traders. 

Despite the controversy, Algo Trading continues to evolve and innovate, with new 

technologies and techniques being developed all the time. Today, Algo Trading is used by a 

wide range of market participants, from individual traders to large institutional investors, and 

it has become an essential tool for navigating the complex and volatile financial markets of 

today. 

One of the key advantages of Algo Trading is its speed and efficiency. Algo Trading enables 

traders to execute trades at lightning-fast speeds, allowing them to take advantage of market 

movements quickly. This helps to reduce the risk of slippage, which occurs when prices 

change between the time a trade is placed and executed. The speed and efficiency of Algo 

Trading are essential in today's markets, where a delay of even a few seconds can mean the 

difference between profit and loss. 

Consistency is another key benefit of Algo Trading. Algo Trading takes the emotion out of 

trading, ensuring that trades are executed based on predefined rules and conditions. This 



 

7 | P a g e  
 

helps to eliminate the human error that can occur with manual trading. By removing the 

emotional aspect of trading, Algo Trading helps traders to stick to their strategies and make 

more consistent decisions. 

Backtesting is another important benefit of Algo Trading. Algo Trading allows traders to test 

their strategies using historical market data to determine their effectiveness. This helps 

traders to refine their strategies and optimize their trading systems. By backtesting their 

strategies, traders can identify potential flaws and make improvements before deploying 

them in real-time trading. 

Scalability is another important advantage of Algo Trading. Algo Trading allows traders to 

execute trades across multiple markets and instruments simultaneously, making it easier to 

diversify their portfolios and manage risk. This is especially important for institutional 

investors, who need to manage large portfolios across multiple markets. 

Finally, Algo Trading can be more cost-effective than traditional trading methods, as it 

eliminates the need for human traders and reduces the cost of executing trades. This can be 

especially beneficial for individual traders who may not have the resources to hire a team of 

traders to execute trades on their behalf. 

  



 

8 | P a g e  
 

Straddle 

The straddle options strategy is a popular strategy used by investors and traders to take 

advantage of volatile market conditions. It involves buying a call option and a put option on 

the same underlying asset with the same strike price and expiration date. The investor profits 

if the price of the underlying asset moves significantly in either direction. 

For example, let's say that an investor buys a straddle on Reliance Industries Ltd. The stock is 

currently trading at Rs. 2,000 per share, and the investor buys a call option with a strike price 

of Rs. 2,000 and a put option with a strike price of Rs. 2,000. Both options expire in one month. 

If the price of Reliance Industries stock goes up to Rs. 2,200, the investor can exercise the call 

option and buy the stock at Rs. 2,000, then immediately sell it at the current market price of 

Rs. 2,200, resulting in a profit of Rs. 200 per share. Alternatively, if the price of Reliance 

Industries stock goes down to Rs. 1,800, the investor can exercise the put option and sell the 

stock at Rs. 2,000, then immediately buy it at the market price of Rs. 1,800, resulting in a profit 

of Rs. 200 per share. 

The maximum potential loss for a straddle is the total premium paid for the call and put 

options. This occurs if the price of the underlying asset does not move significantly in either 

direction before the options expire. 

 

Selling Straddles: 

Option selling straddles involves selling both a call option and a put option on the same 

underlying asset with the same strike price and expiration date. The seller of the Straddle 

collects a premium from the buyer and profits if the price of the underlying asset remains 

relatively stable. 

For example, let's say that an investor sells a straddle on HDFC Bank Ltd. The stock is currently 

trading at Rs. 1,500 per share, and the investor sells a call option with a strike price of Rs. 

1,500 and a put option with a strike price of Rs. 1,500. Both options expire in one month, and 

the investor collects a premium of Rs. 100 per share. 

If the price of HDFC Bank stock remains relatively stable and does not move significantly in 

either direction before the options expire, the seller of the Straddle can keep the entire 

premium of Rs. 100 per share. However, if the price of HDFC Bank stock moves significantly 

in either direction, the seller of the Straddle can face significant losses. 

If the price of HDFC Bank stock goes up to Rs. 1,700, the buyer of the call option can exercise 

the option and buy the stock at Rs. 1,500, then immediately sell it at the market price of Rs. 

1,700, resulting in a profit of Rs. 200 per share. The seller of the Straddle would be required 

to sell the stock at the strike price of Rs. 1,500, resulting in a loss of Rs. 200 per share, in 

addition to the premium collected. 



 

9 | P a g e  
 

Similarly, if the price of HDFC Bank stock goes down to Rs. 1,300, the buyer of the put option 

can exercise the option and sell the stock at Rs. 1,500, then immediately buy it at the market 

price of Rs. 1,300, resulting in a profit of Rs. 200 per share. The seller of the Straddle would 

be required to buy the stock at the strike price of Rs 1,500, resulting in a loss of Rs. 200 per 

share in addition to the premium collected. 

In essence, the risk of selling a straddle is unlimited, as the price of the underlying asset can 

move significantly in either direction. The potential profit is limited to the premium collected 

from the buyer. 

When selling straddles, it's important to consider the potential risks and rewards carefully. 

It's also important to have a solid understanding of the underlying asset and its potential for 

volatility. Conservative traders may prefer to sell straddles on stable, low-volatility assets, 

while more aggressive traders may choose to sell straddles on assets with higher volatility. 

 

Example of Selling a Bank Nifty Option Straddle: 

Let's say that a trader wants to sell a straddle on the Bank Nifty index, which is currently 

trading at 35,000. The trader decides to sell a call option and a put option with a strike price 

of 35,000 and an expiration date of one month. The trader collects a premium of Rs. 500 per 

share. 

If the price of the Bank Nifty index remains relatively stable and does not move significantly 

in either direction before the options expire, the trader can keep the entire premium of Rs. 

500 per share. 

However, if the price of the Bank Nifty index moves significantly in either direction, the trader 

can face significant losses. If the price of the Bank Nifty index goes up to 36,000, the buyer of 

the call option can exercise the option and buy the index at 35,000, then immediately sell it 

at the market price of 36,000, resulting in a profit of Rs. 1,000 per share. The trader would be 

required to sell the index at the strike price of 35,000, resulting in a loss of Rs. 1,000 per share 

in addition to the premium collected. 

Similarly, if the price of the Bank Nifty index goes down to 34,000, the buyer of the put option 

can exercise the option and sell the index at 35,000, then immediately buy it at the market 

price of 34,000, resulting in a profit of Rs. 1,000 per share. The trader would be required to 

buy the index at the strike price of 35,000, resulting in a loss of Rs. 1,000 per share in addition 

to the premium collected. 

  



 

10 | P a g e  
 

Technologies and Tools Used 
 

Broker APIs 
Broker APIs, or Application Programming Interfaces, are interfaces provided by online brokers 

that allow developers to integrate their trading platforms with external applications or 

software. These APIs give developers access to the broker's trading data, such as stock quotes, 

trade history, and order book information, as well as the ability to place trades and execute 

orders. 

Broker APIs have become increasingly popular among traders and investors as they allow for 

a more streamlined and automated trading experience. With access to real-time market data 

and the ability to execute trades directly from their own software, traders can more efficiently 

manage their portfolios and respond to changing market conditions. 

There are several different types of broker APIs available, each with its own unique features 

and capabilities. Some APIs provide basic functionality, such as access to real-time stock 

quotes and historical data, while others allow for more advanced trading strategies and 

automation. 

One popular use of broker APIs is in the development of algorithmic trading systems. These 

systems use complex algorithms to analyze market data and execute trades based on 

predetermined rules and parameters. By leveraging broker APIs, developers can access real-

time market data and execute trades automatically without the need for manual intervention. 

Another common use of broker APIs is in the development of trading bots. These bots are 

automated trading systems that execute trades based on predetermined strategies and 

criteria. With access to real-time market data and the ability to execute trades directly from 

the bot's software, traders can more effectively manage their portfolios and respond to 

changing market conditions. 

In addition to algorithmic trading and trading bots, broker APIs are also used in a variety of 

other applications and software. For example, some financial analysis software tools integrate 

with broker APIs to provide real-time market data and analysis. Similarly, some portfolio 

management tools use broker APIs to execute trades and manage portfolios directly from 

their software. 

One of the key benefits of using broker APIs is the ability to access real-time market data and 

execute trades directly from external software. This can save traders significant amounts of 

time and improve their overall trading efficiency. Additionally, the use of broker APIs can 

provide more granular control over trades, allowing for more advanced trading strategies and 

risk management. 



 

11 | P a g e  
 

However, there are also some potential risks and drawbacks associated with the use of broker 

APIs. For example, poorly implemented or unreliable APIs can result in lost trades or other 

issues. Additionally, the use of APIs can introduce additional security risks, such as the 

potential for unauthorized access to trading accounts. 

Overall, broker APIs are a powerful tool for traders and investors looking to streamline their 

trading process and improve their overall trading efficiency. However, it's important to 

carefully consider the potential risks and drawbacks associated with their use and to 

implement proper risk management and security protocols. 

 

VS Code 
Visual Studio Code is a free, open-source code editor developed by Microsoft, designed to be 

highly customizable and flexible, allowing developers to tailor it to their needs and workflows. 

One of the key features of VS Code is its built-in support for a wide range of programming 

languages, including popular languages such as Python, Java, and JavaScript. The editor 

includes many features commonly found in more full-featured integrated development 

environments (IDEs), such as syntax highlighting, code completion, and debugging tools. 

Another key feature of VS Code is its extensibility. The editor includes a robust extension 

marketplace, which allows developers to easily download and install extensions that add 

additional functionality to the editor. These extensions can range from simple utility tools, 

such as code formatting and linting, to more complex tools, such as Git integration and 

integrated terminals. 

VS Code also includes a number of productivity features that can help developers work more 

efficiently. Its editor includes a built-in search function that can search across multiple files 

and directories and a powerful command palette that allows developers to quickly access and 

execute commands. 

One of the main benefits of using VS Code is its flexibility and customizability. The editor can 

be tailored to meet the needs of developers working in a wide range of environments and on 

a wide range of projects. Additionally, because VS Code is open-source, developers can 

contribute to the development of the editor and create their own extensions and plugins. 

However, there are some potential drawbacks to using VS Code. Because the editor is highly 

customizable, it can take some time to set up and configure to meet the specific needs of 

each developer. Additionally, the editor may not be as well-suited for larger projects or more 

complex development workflows as full-featured IDEs such as Eclipse or Visual Studio. 

It is a powerful and flexible code editor that can be a valuable tool for developers working on 

a wide range of projects. Its customizability and extensibility make it a popular choice among 

developers, and its support for a wide range of programming languages and productivity 

features can help developers work more efficiently and effectively. 



 

12 | P a g e  
 

Python 3.10 
Python 3.10 is the latest stable release of the Python programming language, which was 

released in October 2021. It includes several new features and improvements over the 

previous versions of Python, making it a popular choice among developers. 

One of the key features of Python 3.10 is improved performance. The new version includes a 

number of optimizations that help to make Python programs run faster, including faster 

parsing and improved garbage collection. Additionally, the new version includes several new 

built-in functions, including a new syntax for combining two dictionaries and a new method 

for removing prefixes and suffixes from strings. 

Another significant feature of Python 3.10 is improved support for type annotations. Type 

annotations allow developers to specify the type of a variable, parameter, or return value in 

their code. This helps to make the code more self-documenting and can improve code quality 

by catching type-related bugs at compile time. Python 3.10 includes several improvements to 

the type annotation system, including better support for generics and improved error 

messages. 

Python 3.10 also includes several new features that make it easier to work with async 

programming. Async programming allows developers to write code that can perform multiple 

tasks simultaneously, making it ideal for web development, networking, and other 

applications where concurrency is important. The new version includes several new modules 

and functions that make it easier to work with async programming, including improved 

support for asyncio and new syntax for defining async functions. 

Finally, Python 3.10 includes several other improvements and optimizations, including 

improved error messages, better support for Unicode, and improved compatibility with other 

languages and platforms. Overall, Python 3.10 is a significant update to the language that 

brings many new features and improvements that make it an even better choice for a wide 

range of applications. 

 

Python Libraries 
1. The `requests` library is a popular Python library for making HTTP requests. It provides a 

simple and intuitive way to interact with web services, allowing you to easily make HTTP 

requests and handle responses. With `requests`, you can send GET, POST, PUT, and DELETE 

requests, add custom headers and cookies, and handle errors and redirects. It's a great library 

for working with RESTful APIs and web scraping. 

2. The `datetime` library is a built-in Python library for working with dates and times. It 

provides a number of classes and functions for representing and manipulating dates and 

times, including `datetime`, `date`, and `time`. With `datetime`, you can perform common 

operations like adding and subtracting dates, comparing dates, and formatting dates and 



 

13 | P a g e  
 

times for display. It's a useful library for any application that needs to work with dates and 

times. 

3. The `logging` library is a built-in Python library for logging messages from your application. 

It provides a simple way to write messages to a log file or console, with support for different 

log levels and formatting options. With `logging`, one can easily debug issues in your 

application by writing detailed log messages that can be analyzed later. 

4. The `time` library is a built-in Python library for working with time values. It provides a 

number of functions for working with time, including `time()`, `sleep()`, and `strftime()`. With 

`time`, you can perform operations like measuring the time it takes to execute code, sleeping 

for a certain amount of time, and formatting time values for display. 

5. The ̀ yaml` library is a Python library for working with YAML data. YAML is a human-readable 

data serialization format that's often used for configuration files and data exchange between 

applications. With `yaml`, you can easily read and write YAML data in Python, making it a 

great library for working with configuration files and other YAML-based data sources. 

6. The `pandas` library is a popular Python library for data analysis and manipulation. It 

provides data structures like `Series` and `DataFrame` that make it easy to work with tabular 

data in Python. With `pandas`, you can perform operations like filtering, grouping, and 

aggregating data, as well as visualizing data with built-in plotting functions. It's a great library 

for working with large datasets and performing data analysis tasks. 

7. The `pyotp` library is a Python library for generating and verifying one-time passwords 

(OTP). OTPs are often used for two-factor authentication (2FA), where users must enter a 

code in addition to their password to log in to a system. With `pyotp`, you can easily generate 

and verify OTPs in your Python application, making it a great library for building secure login 

systems. 

8. The `os` library is a built-in Python library for interacting with the operating system. It 

provides a number of functions for working with files, directories, and other operating system 

resources. With `os`, you can perform operations like creating and deleting files and 

directories, listing the contents of directories, and working with environment variables. 

9. The `urllib` library is a Python library for working with URLs and HTTP requests. It provides 

a number of modules for working with different parts of the URL, including `urllib.request` for 

making HTTP requests, `urllib.parse` for parsing URLs, and `urllib.error` for handling errors. 

With `urllib`, you can easily make HTTP requests and work with URLs in your Python 

application. 

10. The zipfile module in Python provides a way to read and write ZIP files. It can be used to 

compress and decompress files, as well as extract files from a ZIP archive. The zipfile module 

is particularly useful when working with large archives, as it provides a way to read and write 

files in chunks rather than loading the entire archive into memory at once. 



 

14 | P a g e  
 

11. The timeit module in Python provides a way to measure the execution time of small code 

snippets. It can be used to compare the performance of different algorithms, test the speed 

of specific functions, and optimize code. The timeit module is particularly useful when 

optimizing code, as it provides a way to measure the impact of small changes on the overall 

performance of a program. 

 
Telegram 
A Telegram bot can be a useful tool for getting live updates of the execution and alerts in a 

trading strategy. The bot can be integrated with the Python script to send messages to a 

Telegram channel or group, providing real-time updates on the progress of the strategy. The 

bot can be configured to send alerts when specific events occur, such as when a trade is 

executed or when certain market conditions are met. This can be particularly useful for 

traders who need to stay on top of market movements and want to be notified immediately 

when a trading opportunity arises. With a Telegram bot, traders can have instant access to 

important information and take action quickly, giving them an edge in the market. 

  



 

15 | P a g e  
 

Data Connection and Broker Details 

 

As a part of my algorithmic trading project, I have chosen to use Finvasia as my brokerage 

firm for its zero brokerage fees and active API support. The availability of proper 

documentation and examples, as well as live prices through WebSocket, made it a suitable 

choice for my trading needs. 

Finvasia is a fast-growing fintech company in India that offers various financial services, 

including zero brokerage, zero clearing, zero account opening, zero AMC, and more. The 

company also serves as a one-stop-shop for Foreign Portfolio Investors (FPI) looking to invest 

in the Indian markets and has advised institutional clients on their investments in fourteen 

countries. 

The team at Finvasia is led by ex-Wall Street professionals with deep financial expertise who 

aim to make financial tools accessible and affordable for investors. The company received FDI 

funding from notable venture capitalists in 2016, valuing it at INR 1.5 billion. This funding 

enabled Finvasia to achieve its mission of cutting trading costs and offering technology-driven 

financial services to its clients. 

With zero brokerage fees, I was able to save significantly on transaction costs, which is a 

significant advantage for an algorithmic trader. Moreover, Finvasia's active API support was 

crucial to the success of my trading strategy. The API was well-documented with examples, 

making it easy for me to integrate it with my trading platform. The live prices provided 

through WebSocket also helped me make quick and informed trading decisions. 

In addition to these advantages, Finvasia offers a range of other services that make it a 

compelling choice for traders. The company provides an online trading platform, enabling 

traders to access real-time market data and execute trades. They also offer a mobile trading 

app, making it easy to trade on the go. The platform supports various asset classes, including 

equities, commodities, currencies, and more. 

The account opening process with Finvasia was straightforward and easy to navigate. The 

company offers a paperless account opening process, making it convenient for traders to 

open an account from anywhere. They also provide a free demat account and a 2-in-1 account 

that allows traders to trade in both equity and commodity segments. 

In conclusion, choosing Finvasia as my brokerage firm has been a great decision for my 

algorithmic trading project. The zero brokerage fees and active API support, coupled with the 

range of other services and asset classes offered, make it an excellent choice for traders 

looking to execute their trading strategies efficiently and effectively. The team's financial 

expertise and vision of making financial tools accessible and affordable for investors also give 

me confidence in their ability to provide quality financial services. 



 

16 | P a g e  
 

Telegram Connection 

For my trading project, I have utilized a Telegram connection for receiving live updates. The 

code for the Telegram bot is implemented in Python, and the necessary credentials are stored 

in a YAML file. 

with open('telegram_bot.yml') as f: 

    bot = yaml.load(f, Loader=yaml.FullLoader) 

bot_token, chat_id  = bot['bot_token'] , bot['chat_id'] 

def send_message(text): 

    base_url = 

f'https://api.telegram.org/bot{bot_token}/sendMessage?chat_id={chat_id}&text={text}' 

    requests.get(base_url) 

msg = f"Bot Connected at %s" % (datetime.now().strftime("%H:%M:%S")) 

send_message(msg) 

To start with, I have imported the YAML module and read the credentials from the YAML file 

using the `load` method. The bot token and chat ID are used to initialize the bot object.  

I have defined a function `send_message(text)` to send messages to the Telegram chat. The 

function takes the text message as input and constructs a URL using the bot token, chat ID, 

and message text. The `requests. get()` method is used to send a GET request to the Telegram 

API, which in turn sends the message to the specified chat. 

Finally, I have used the `send_message()` function to send a message to the Telegram chat. In 

this case, I have sent a message stating that the bot has been successfully connected, along 

with the current timestamp. 

The purpose of this code is to log the status of the bot and receive live updates on the trading 

activity. By sending messages to the Telegram chat, I can keep track of the bot's performance, 

as well as any errors or issues that may arise during the trading process. 

This feature is particularly useful for automated trading systems, where it is essential to 

monitor the bot's activity and performance continuously. With the Telegram connection in 

place, I can receive real-time updates and take prompt action if necessary. 

In conclusion, the Telegram connection for live updates is a valuable feature for any trading 

project. It enables real-time monitoring of the bot's activity and performance, which is crucial 

for automated trading systems. By using the code provided above, I can easily integrate the 

Telegram connection into my trading project and stay informed of any developments in real-

time. 



 

17 | P a g e  
 

Modules Used  

The `Logger` module is a built-in module in Python that allows developers to write custom log 

messages in their code for debugging purposes. It provides a way to collect and store log 

messages in a structured manner, which can be used to analyze issues and improve the 

codebase. The code sets up a basic logging configuration with a specified log level, date 

format, message format, and log file handler. If the 'logs' directory does not exist, it creates 

one. The `FileHandler` specified in the code writes log messages to a new file with a name 

containing the current date in 'YYYY-MM-DD' format, prefixed with 'straddle-'. 

 

The Telegram bot module involves setting up a Telegram bot by loading the bot token and 

chat ID from a YAML file. It also has a `send_message()` function to send updates to the 

Telegram channel. The function takes a message text and sends it to the channel using the 

Telegram bot API.  

This code block commented the start of the program that uses the ShoonyaApiPy API. It first 

creates an instance of the ShoonyaApiPy class. It then reads in the login credentials from a 

YAML file using the PyYAML module. The credentials include the user ID, password, two-

factor authentication token, vendor code, API secret key, and IMEI number. The `api.login()` 

method is then called with these credentials as arguments to authenticate the user and 

establish a session with the API. The return value is stored in the `ret` variable. 

 

The WebSocket code include establishing and handling a websocket connection using 

ShoonyaApiPy library. The code defines two event handlers - `event_handler_feed_update` 

and `event_handler_order_update` - which are called whenever there is an update in the tick 

data or order data respectively. The `open_callback` function is called when the websocket 

connection is successfully established. The `startWebSocket` function starts the websocket 

connection and waits for it to open by continuously checking the value of `feed_opened` 

variable. Once the connection is established, the function returns `True`. Overall, the code is 

used to receive real-time updates for stock prices and order status. 

 

Then code then  downloads market symbols for various exchanges in India and saves them to 

a folder called "Masters". It starts by creating the folder if it does not exist, then proceeds to 

download the zip files for each exchange and asset type. It then extracts the contents of each 

zip file to the "Masters" folder, and deletes the original zip file. After all the files have been 

downloaded and extracted, it logs the successful download of all the masters and sends a 

message via Telegram to indicate that the masters have been updated. 

 



 

18 | P a g e  
 

The ̀ get_expiry_dates` function retrieves all the expiry dates for the given symbol by querying 

a pandas dataframe named `NFO_SYMBOLS`. It extracts the dates by filtering out the rows 

with the matching symbol, parsing the date string to the `datetime` object, sorting the list, 

and returning the dates in the required format. 

 

The `get_current_expiry` function uses `get_expiry_dates` function to retrieve all the expiry 

dates for the symbol and returns the current expiry date. 

 

The `get_next_expiry` function also uses `get_expiry_dates` function to retrieve all the expiry 

dates for the symbol and returns the next expiry date. 

 

The `get_strike_diff` function retrieves all the strikes for the given symbol from the 

`NFO_SYMBOLS` dataframe and calculates the difference between consecutive strikes. It 

returns the minimum of all the calculated differences. 

 

The `get_lot_size` function takes trading symbol and returns its lot size. It retrieves the lot 

size from the `NFO_SYMBOLS` dataframe by filtering out row with matching trading symbol. 

 

The `get_symbol_details` function uses the `get_expiry_dates` and `get_strike_diff` functions 

to retrieve current and next expiry dates and strike difference for the given symbol. It logs the 

message and sends it to the specified chat application. 

 

The `get_atm_strike` function takes a token and calculates the strike price closest to the last 

traded price for the given token. It returns the calculated strike. 

 

The `get_NFO_token` function takes a trading symbol and retrieves its corresponding NFO 

token from the `NFO_SYMBOLS` dataframe. 

 

The `expiry` function calculates the current expiry date of the given token by querying the API 

for the current ATM call and put options. If the sum of their last traded price is greater than 

2.33 times the strike difference and both options have last traded prices greater than 1.11 

times the strike difference, then it returns the current expiry date, else it returns the next 

expiry date. 



 

19 | P a g e  
 

 

The `get_atm` function uses `expiry` and `get_atm_strike` functions to calculate the ATM 

strike and call and put option symbols for the given token and symbol. It logs the message 

and returns the calculated values. 

 

The `straddle_shift_required` function takes a strike price and a token and checks if the last 

traded price for the given token is 1.44 times the strike difference away from the given strike 

price. If it is, then it returns True, else it returns False. 

 

The `get_fillprice` function takes a norenordno and retrieves its corresponding fill price from 

the API. 

 

The ̀ get_openorder` function takes a norenordno and retrieves its corresponding status from 

the API. 

 

The ̀ get_daily_bnf_mtm` function retrieves the daily mark to market (MTM) for the BankNifty 

index by querying the API for the current positions. 

 

The `straddle` function takes two optional parameters - `token` and `symbol`, and returns the 

strike price of the at-the-money (ATM) option, along with the symbols for the call option and 

put option. The function first calls the `get_atm` function to retrieve the ATM strike price and 

option symbols. It then calculates the lot size and quantity for each option based on the ̀ LOTS` 

constant and the lot size retrieved from the `get_lot_size` function. It places a sell market 

order for both the call and put options using the `place_order` function of the `api` object, 

and subscribes to their respective token streams using the `subscribe` function. It then 

retrieves the order numbers and fill prices using the `get_fillprice` function, and logs and 

sends messages with the relevant information. 

 

The `current_straddle_exit` function takes two symbol parameters - `CE_SYMBOL` and 

`PE_SYMBOL` - representing the call and put options of the current straddle position. It places 

buy market orders for both options using the `place_order` function, unsubscribes from their 

token streams using the `unsubscribe` function, retrieves the order numbers and fill prices 

using the `get_fillprice` function, and logs and sends messages with the relevant information. 

The function is used to exit the current straddle position. 



 

20 | P a g e  
 

Strategy Explanation  

The options market is a complex market with many different strategies that can be used. One 

of the most popular options trading strategies is the Straddle Strategy. The Straddle Strategy 

involves buying or selling an at-the-money call option and an at-the-money put option at the 

same time. The Straddle buying Strategy is a good strategy to use when you believe that there 

will be a significant price movement in the underlying asset, but you are not sure which 

direction the price will move. However, if market seems stable and price is not expected to 

move in either direction, then Straddle can be sold and the premium can be pocketed. 

 

The Straddle selling strategy is based on the following algorithm: 

1. Define all the functions and constants. 

2. Select the instruments to be traded. 

3. Check if a Straddle is open. If not, open a Straddle using the Straddle function, by selling at-

the-money options. The Straddle function returns the strike and symbol details and counts it 

as one trade with a target of Rs. 1000 and a trailing stop loss of Rs. 1000 from the best mark-

to-market (MTM). 

4. When the target of Rs. 1000 hits, check if the new Straddle price that needs to be executed 

is the same Straddle. If so, instead of booking the target, increase the target by Rs. 250. 

5. Keep checking for exit conditions, i.e., if the target has been hit or the stop-loss has been 

hit. If neither condition is met, check if the Straddle needs to be shifted using the 

`Straddle_shift_required` function. If the condition is true, shift the Straddle to a new strike 

price. No new trade is counted in adjustments, and a new trade starts only when either the 

stop-loss or target gets hit. 

6. The final exit happens when the time is 3:29:55 pm, exactly four seconds before the market 

closes, so the Straddle exit gets executed correctly. The daily maximum trades are five, and 

the maximum stop losses to be taken in a day are two, i.e., a maximum potential loss of Rs. 

2000 and a maximum potential profit of the premiums collected. 

7. The execution also logs everything with the logger and sends all the important updates to 

Telegram, including the trade execution, entry exits, adjustments, etc. 

 

The algorithm uses a while loop that keeps running until the daily maximum trades or 

maximum stop-losses have been reached. The loop checks the mark-to-market (MTM) value 

of the Straddle at each iteration and performs the necessary actions depending on the MTM 

value. 



 

21 | P a g e  
 

 

The code uses the Finvasia's API to fetch the MTM value, which is then compared with the 

stop-loss and target values. If the stop-loss value is hit, the code sends a message to Telegram 

and closes the Straddle. If the target value is hit, the code checks if the new Straddle price is 

the same as the old Straddle. If it is, the code increases the target value by Rs. 250. If the new 

Straddle price is different, then the trade Target gets hit and another straddle is opened and 

counted as new trade. The algorithm also includes a function to check if a Straddle shift is 

required. The Straddle_shift_required function checks the MTM value of the Straddle and 

determines if the price movement requires the Straddle to be shifted to a new strike price. If 

the condition is true, the Straddle is shifted to the new strike price using the Straddle_shift 

function. The Straddle_shift function calculates the new strike price based on the current 

market price and shifts the Straddle to the new strike price by selling at-the-money options. 

 

Overall, this Algo Trading strategy using the Straddle Strategy is designed to automate the 

process of trading options in the Indian markets. The strategy uses Python programming 

language and relies on several third-party libraries, such as Finvasia's API, to interact with the 

Indian markets. The algorithm is designed to execute trades automatically using computer 

programs and algorithms, and includes functions to open and close Straddles, shift Straddles 

to new strike prices, and check exit conditions. The strategy also includes logging and 

messaging features to keep the trader updated on the status of their trades. 



 

22 | P a g e  
 

Performance in Live Market 

During the month of April, The algorithm was used to execute trades in the financial markets. 

The algorithm had a capital requirement of 175,000 rupees and was active for a total of 15 

trading days. 

Out of these 15 trading days, the algorithm was able to generate profits on 9 of them, 

resulting in a win rate of 60%. The remaining 6 days resulted in losses. The maximum winning 

streak was 3 days, while the maximum losing streak was 2 days. 

In terms of overall performance, the algorithm was able to generate a total profit of 5,926.25 

rupees during the month of April, resulting in a return on investment (ROI) of 3.39%. The 

maximum profit earned on a single trading day was 2,357.5 rupees, while the maximum loss 

on a single trading day was -1,041.25 rupees.  

On average, the algorithm generated a profit or loss of 395.08 rupees per trading day. On 

days where a profit was earned, the average profit was 916.39 rupees, while on days where 

a loss was incurred, the average loss was -386.88 rupees. 

The maximum drawdown, which represents the largest peak-to-trough decline in the 

algorithm's equity, was 0 rupees during the month of April. This means that the algorithm did 

not experience any significant losses during the month. 

Looking at the data, it is clear that the algorithm was able to generate consistent profits during 

the month of April. The win rate of 60% indicates that the algorithm was able to accurately 

identify profitable trading opportunities more often than not. Additionally, the fact that the 

algorithm did not experience any significant drawdowns during the month suggests that it 

was able to manage risk effectively. 

In addition to the performance of the algorithm, it is also important to consider the broader 

context of the financial markets during the month of April. During this time, the markets 

experienced significant volatility due to a variety of factors, including geopolitical tensions 

and changes in monetary policy. Despite these challenges, the algorithm was able to generate 

consistent profits, which is a testament to its effectiveness in navigating difficult market 

conditions. 

Overall, the performance of the algorithm during the month of April was impressive, and it 

serves as a strong foundation for further optimization and refinement in the future. With the 

right approach and continued effort, it is possible to generate consistent profits. 

 

 

 

 



 

23 | P a g e  
 

Profit/Loss on Each Trading Day :- 

Dates Profit Charges Net Amount 

03/04/2023 2357.5 48.91 2308.59 
05/04/2023 1566.25 45.01 1521.24 
10/04/2023 293.75 185.66 108.09 
11/04/2023 -267.5 102.45 -369.95 
12/04/2023 -370 39.42 -409.42 
17/04/2023 617.5 198.27 419.23 
18/04/2023 -1041.25 101 -1142.25 
19/04/2023 878.75 29.88 848.87 
20/04/2023 -141.25 46.53 -187.78 

21/04/2023 55 99.79 -44.79 
24/04/2023 1685 77.46 1607.54 
25/04/2023 253.75 75.49 178.26 
26/04/2023 -312.5 55.15 -367.65 
27/04/2023 -188.75 134.22 -322.97 
28/04/2023 540 117.34 422.66 

Total 5926.25 1356.58 4569.67 
 

 

Overall Performance Statistics :- 

S. No. Statistics Value 

1 Capital Required (Max) 175000 

2 Total Trading Days 15 

3 Win Days 9 

4 Loss Days 6 

5 Max Winning Streak Days 3 

6 Max Losing Streak Days 2 

7 Win Rate 60.00% 

8 Total Profit               5,926.25  

9 ROI 3.39% 

10 Max Profit in a Day 2357.5 

11 Max Loss in a day -1041.25 

12 Avg Profit/Loss Daily                               395.08  

13 Avg Profit on Profit Days                               916.39  

14 Avg Loss on Loss Days                             -386.88  

15 Max Drawdown 0 

16 Max Drawdown % 0.00% 

 



 

24 | P a g e  
 

 

  

0

1000

2000

3000

4000

5000

6000

7000

Cumulative Profit



 

25 | P a g e  
 

Future Prospects 

The BankNifty Straddle Selling strategy has shown promising results, and as with any strategy, 

there is always room for improvement. Here are some potential future prospects that could 

be implemented to enhance the strategy: 

1. Adjusting the strategy to perform better in low volatility conditions: One way to improve 

the strategy is by modifying it to perform better in low volatility conditions. This could be 

done by quickly adjusting straddles and holding straddles in high volatility times. This would 

require monitoring market conditions closely and adapting the strategy accordingly. 

2. Making the strategy more dynamic: Another potential improvement to the strategy is 

making it more dynamic. This could be achieved by automatically stopping trades when 

market conditions are no longer favorable. By doing so, losses can be minimized and profits 

can be maximized. 

3. Integrating a GUI dashboard and controller: Implementing a GUI dashboard and controller 

would provide a better view of the strategy's performance and enable easier monitoring of 

trades. This would not hinder the performance of the algorithm but would provide better 

insights to make informed decisions. 

4. Running the straddle entry and exit order asynchronously: Running the straddle entry and 

exit order asynchronously can improve execution speed and reduce slippage. This can be 

achieved by using multithreading in the code, allowing for the strategy to execute more 

efficiently. 

5. Using object-oriented concepts: Using object-oriented concepts can make the code 

cleaner, more organized, and easier to maintain. By structuring the code this way, it can be 

easier to implement changes and fix errors as the strategy evolves. 

6. Auto-selecting position sizing: Implementing an auto-selecting position sizing feature based 

on capital available and risk-taking capacity can help reduce losses and maximize profits. This 

would ensure that the position size is always appropriate for the given market conditions. 

7. Adding an emergency stop button: Adding an emergency stop button to exit all open 

positions and stop the code execution can provide a safety net in case of unexpected market 

conditions or errors in the code. This can help minimize losses and prevent further damage. 

8. Improving error handling: Extensively improving error handling in the code can help reduce 

downtime and ensure the strategy runs smoothly. By implementing thorough error handling 

procedures, the strategy can be more robust and less prone to failures. 

9. Integration of machine learning algorithms: Incorporating machine learning algorithms into 

the strategy can help to better predict market conditions and make more informed trading 

decisions. By analyzing historical market data, the algorithm can learn to recognize patterns 

and signals that indicate when to enter or exit trades. 



 

26 | P a g e  
 

 

10. Expansion to other markets: While the BankNifty market may be the focus of the current 

strategy, there is potential to expand the algorithm to other markets. By adapting the 

algorithm to work with other indexes or stocks, the strategy can be diversified to mitigate risk 

and potentially increase profitability. 

In conclusion, the BankNifty Straddle Selling strategy has demonstrated promising results and 

has room for further improvement and expansion. As market conditions continue to evolve, 

incorporating new technology and refining the algorithm will be crucial to maintaining its 

effectiveness. By remaining adaptable and innovative, this strategy has the potential to 

continue generating profitable returns in the future. 

  



 

27 | P a g e  
 

References 

 

Code for this strategy – https://github.com/AAAI-Lab/Sachin-Sharma 

 

 

1. Python Software Foundation. (n.d.). The Python Language Reference. Retrieved from 

https://www.python.org/doc/ 

2. Shoonya. (n.d.). API Documentation. Retrieved from https://www.shoonya.com/api 

3. Shoonya. (n.d.). Shoonya Python API. Retrieved from 

https://www.shoonya.com/static/website/pdf/shoonya-Python-API.pdf 

4. Shoonya. (n.d.). API Documentation. Retrieved from https://www.shoonya.com/api-

documentation 

5. Shoonya. (n.d.). NFO_symbols.txt. Retrieved from 

https://api.shoonya.com/NFO_symbols.txt.zip 

6. Shoonya-Dev. (n.d.). ShoonyaApi-py. GitHub. Retrieved from 

https://github.com/Shoonya-Dev/ShoonyaApi-py 

7. Microsoft. (n.d.). Visual Studio Code Documentation. Retrieved from 

https://code.visualstudio.com/docs 

8. Nagarvani, G. (2021, March 25). Deploying Algorithmic Trading Strategy: Part 3- 

Telegram Updates. Medium. Retrieved from 

https://medium.com/@ganeshnagarvani/deploying-algorithmic-trading-strategy-part-3-

telegram-updates-b22cd101a258 

9. OpenAI. (n.d.). OpenAI Chat. Retrieved from https://chat.openai.com/ 

10. Zerodha. (n.d.). Varsity. Retrieved from https://zerodha.com/varsity/ 

 

https://github.com/AAAI-Lab/Sachin-Sharma
https://www.python.org/doc/
https://www.shoonya.com/api
https://www.shoonya.com/static/website/pdf/shoonya-Python-API.pdf
https://www.shoonya.com/api-documentation
https://www.shoonya.com/api-documentation
https://api.shoonya.com/NFO_symbols.txt.zip
https://github.com/Shoonya-Dev/ShoonyaApi-py
https://code.visualstudio.com/docs
https://medium.com/@ganeshnagarvani/deploying-algorithmic-trading-strategy-part-3-telegram-updates-b22cd101a258
https://medium.com/@ganeshnagarvani/deploying-algorithmic-trading-strategy-part-3-telegram-updates-b22cd101a258
https://chat.openai.com/
https://zerodha.com/varsity/

