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ABSTRACT

The Vehicle Routing Problem (VRP) is a well-known combinatorial optimization
problem with numerous practical applications, such as optimizing delivery routes,
transportation logistics, and mobile resource allocation. Traditional methods for
solving VRP often rely on heuristics and mathematical programming techniques,
which may struggle to handle large-scale instances and dynamic environments. In
recent years, reinforcement learning (RL) has emerged as a promising approach for
addressing complex optimization problems.

In this thesis, we propose a novel framework for solving the VRP using reinforce-
ment learning techniques. Our approach leverages the power of deep RL algorithms,
specifically the combination of deep neural networks and actor critic, to learn ef-
fective policies for route planning and optimization. By formulating the VRP as
a Markov Decision Process (MDP), we develop an RL agent that learns to make
sequential decisions on vehicle movements and load allocations.

We evaluate our proposed RL framework on a set of benchmark VRP instances,
comparing its performance against traditional heuristics and optimization techniques.
The experimental results demonstrate that our approach achieves competitive so-
lution quality and computational efficiency, especially in larger problem instances.
Furthermore, we investigate the robustness and generalization capability of the learned
policies by evaluating their performance on unseen problem instances.

Overall, our work highlights the potential of reinforcement learning as a promis-
ing methodology for solving the Vehicle Routing Problem. By combining the strengths
of deep RL algorithms and problem-specific insights, we show that RL can offer ef-
ficient and effective solutions to this challenging optimization problem, paving the
way for further advancements in the field of transportation logistics and route plan-
ning.
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CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

The vehicle routing problem (VRP) is a combinatorial optimization and can be
formulized as integer programming problem (ILP). In a vehicle routing problem,
there is a set of depots, vehicles and customers, and the problem is to find the route
for each vehicle such that each customer is serviced by any vehicle. The route is such
that it can be interpreted based on your minimization criteria, e.g., traveled distance,
time, or a combination of both. It first appeared in a paper by George Dantzig and
John Ramser in 1959 [1], in which the first algorithmic approach was written and
was applied to petrol deliveries

1.1 VRP Variant

1.1.1 Capacitated Vehicle Routing Problem

The capacitated vehicle routing problem (CVRP) extends the regular VRP by in-
troducing a capacity element for each customer. In the literature, it is sometimes
referred to as a demand. The customer’s demand is d ∈N+ which may represent ca-
pacity in the form of weight, size but also in some abstract concepts such as a basket
of apples. Additionally, each vehicle has a predefined capacity Q > 0. If the vehicle
capacity of the fleet stays the same, we are dealing with CVRP with a homogeneous
fleet. A fleet with varying capacity for each vehicle is a heterogeneous fleet.
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CHAPTER 1. INTRODUCTION

Figure 1.1: Example of CVRP instance with 4 customers and a
depot. Customer are denoted by circle and depot is denoted by
rectangle and demand of customer written inside in circle[3]

Mathematically, the problem can be formalized as ILP with Boolean decision
variables xk

i j ∈ {0,1} , indicating whether k vehicle travel through edge i, j to serve
customer j. We also introduce state variables Kk

i to keep track of the remaining
capacity of vehicle k before serving customer i.

Where ci j = The costs of travelling from any customer i to any other cus-
tomer j,

m= Number of vehicles,
n= Number of customers,
qi= Demand of customer i

min
m

∑
k=1

n

∑
i=0

n+1

∑
j=1, j ̸=i

xk
i jci j

s.t
m

∑
k=1

n+1

∑
j=1, j ̸=i

= 1 ∀ i ∈ {1,2..,n}

s.t
n+1

∑
j=1, j ̸=i

xk
i j−

n

∑
j=0, j ̸=i

xk
i j = 0 ∀ k ∈ {1,2..,m} ∀ i ∈ {1,2..,n}

n+1

∑
j=1

xk
0 j ≤ 1

xk
i j(K

k
i +qi−Kk

j ) = 0 ∀ k ∈ {1,2, ...,m} ∀ i ∈ {0,1, ...,n} ∀ j ∈ {1,2, ...,n+1}\{i}
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CHAPTER 1. INTRODUCTION

Kk
0 = Kmax ∀ k ∈ {1,2, ...,m}

Kk
i ≥ qi ∀ k ∈ {1,2, ...,m} ∀ i ∈ {1,2..,n}

xk
i j ∈ {0,1} ∀ k ∈ {1,2, ...,m} ∀ i ∈ {1,2, ...,n} ∀ j ∈ {0,1, ...,n}\{i}

1.1.2 Vehicle Routing Problem with Time Windows

The VRPTW extends the regular VRP by time constraint for each customer. Cus-
tomers have assigned a time window interval [tsi, tei] where tsi < tei . The time
interval is the request within a vehicle that is supposed to visit the node.

The time window can be either implemented as a hard constraint or a soft con-
straint. Hard constraint forces the vehicle to visit the node, i.e., the customer either
in the given time interval or the solution is not feasible. Soft constrains are not
strictly enforcing the vehicle to visit the customer, but they introduce a penalty for
a violated interval barring a penalty cost. The penalty becomes a part of the cost
function which VRP aims to minimize. We will be focusing on Hard constraints for
time windows.

Figure 1.2: Example of VRPTW instance with 16 customers and
a depot. Customer are denoted by blue circle and depot is denoted
by black circle and demand of customer written inside in circle and
time window [2]
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1.2 VRP and other similar problem

Travelling Salesman Problem (TSP) is very well-known problem that is closely
related to VRP, in this problem we have n customer and one vehicle to visit all cities
such that we travel shortest path. The E-VRP, which extend the TSP by considering
vehicle as Electric Vehicle which add an additional constrain of battery charge, so
vehicle has to maintain positive battery charge and vehicle can go to charging state
when needed. G-VRP is a special case of EVRP that doesn’t consider the vehicle
capacity

Figure 1.3: Venn diagram for several routing problems according
to their complexity

1.3 Need of VRP and scale of VRP

The advent of pandemic has accelerated the process of shifting the shopping habits
of consumers from traditional brick and mortar retail stores to online e-commerce
websites. With these accelerating trends, one of the critical challenges faced by the
e-commerce and postal industries is the transportation and delivery of orders to a
large number of consumers (hundreds to potentially thousands in a day or shift).
It is estimated that up to 50% of transportation costs are reserved for the last mile
segment. At its core, the last mile delivery is a vehicle routing problem (VRP)
which involves finding optimal routes to distribute goods from depot to customers
while minimizing the total cost incurred and is well-known to be NP-hard. Adding
extra constraints on vehicle capacity and time windows (TW) makes the problem
even harder The scale of problem is also very high which consist of large number of
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customers to be serviced
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Chapter 2

Literature Review

Now that we have presented and formalized the problem and a few of its variants,
we will review some classical methods to solve it to optimality. Our goal in this
section is not to review in detail all optimizations method, but to give an overview
of the base methods involved.

2.1 Approaches to Solve the VRP

2.1.1 Integer Linear Programming

These approaches directly address the problem using the integer linear program-
ming (ILP) formulation introduced above. The goal is to find an assignment of the
binary decision variable xk

i j ∈ {0,1} minimizing the objective while satisfying con-
straints. Most algorithms rely on a Divide-and-Conquer approach and split the initial
solution space into smaller sets. One of the basic algorithmic structures implement-
ing this approach is called Branch-and-Bound

2.1.2 Evolutionary Algorithms

Evolutionary algorithms are heuristic method which does not give exact solution
but give close to optimally solution. Evolutionary algorithms, in particular Genetic
Algorithms (GAs), have been successfully used to VRP. From a population of initial
candidate solutions, a new generation of solutions is generated by recombining and
mutating the most promising solutions according to a fitness criterion. The process
is iterated on many generations. The size of the population and the mutation encour-
age diversity in the exploration of solutions, while the fitness criterion guide this
exploration towards the best solutions.

MFSDSAI, IIT ROORKEE 6
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2.1.3 Reinforcement Learning

Reinforcement learning had phenomenal success in game playing, energy saving,
bio-sciences etc. It is also used to solve Integer Programming Problem which is
present in this paper ‘Reinforcement Learning for Integer Programming: Learning
to Cut’ [8] and vehicle routing problem is also an integer programming problem so
it can also solve using reinforcement learning. Now we will review some research
paper which are try to solve VRP using reinforcement learning.

‘Deep Reinforcement Learning Algorithm for Fast Solutions to Vehicle Routing
Problem with Time-Windows ‘[4] this paper solves vehicle routing problem with
time window which is published by Abhinav Gupta, Supratim Ghosh, Anulekha
Dhara. They used deep Q network and heuristics to solve it fast .

Deep Reinforcement Learning Approach to Solve Dynamic Vehicle Routing Prob-
lem with Stochastic Customers’ [9] this paper solves dynamic vehicle routing prob-
lem which is published by Waldy Joe, Hoong Chuin Lau. They used approximate
value function and heuristics to solve it.

‘Deep Reinforcement Learning for the Electric Vehicle Routing Problem with
Time Windows’ [10] this paper solves Electric vehicle routing problem which is
published by Bo Lin, Bissan Ghaddar, Jatin Nathwani. They used policy gradient
approach .

‘ Reinforcement Learning for Solving the Vehicle Routing Problem ’ [3] this is the
first paper which tried to solve vehicle routing problems using reinforcement learn-
ing which is publish NIPS and written by Mohammadreza Nazari , Afshin Oroojlooy
, Lawrence V. Snyder , Martin Takácˇ .They tried to model vehicle routing problem
as markov decision process (MDP) and have generalized their framework to include
a wider range of combinatorial optimization problem such as VRP and we have also
tried this approach and got some result which is given in Section 6.

MFSDSAI, IIT ROORKEE 7
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Chapter 3

Theoretical Background

In this chapter, we will be covering the advanced theoretical background to fully
understand the solved task of VRP using ML.

3.1 Reinforcement Learning

ML can be divided with a little simplification into three categories; supervised learn-
ing, unsupervised learning, and reinforcement learning. Supervised learning is the
most common where the model is learned from the provided labeled data. Unsuper-
vised learning, on the other hand, is about finding a hidden patterns in a collection
of data with no labels. Finally, reinforcement learning has no labeled data but learns
by interacting with the environment and getting feedback in the form of rewards as
shown in Figure .

Figure 3.1: Agent feedback loop [12]

The Reinforcement Learning mimics the learning process of humans beings. By
experiencing the world and accumulating knowledge, we are learning how to handle
novel situations. reinforcement learning (RL) system consists of agent in observed
state st , the agent interacts with the environment via its actions at at discrete time
steps t and receives a reward rt+1 for given action. The action moves the agent into a
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new state st+1. The goal of the agent is to learn a policy π which chooses the action
that maximizes the agent’s rewards based on the environment [12].

3.1.1 State and Action Value Functions

Transition to a new state gives us a reward and to maximize it, we need a way to
quantify how good a state is. A state-value function Vπ(s) predicts a future reward
for a given state when following the policy π [12] .

Vπ(s) = E[Gt |St = s]

Gt =
∞

∑
k=0

γ
kRt+k+1

The equation calculates Gt , all future rewards, sometimes called as return [12]. The
γ ∈ [0,1] is a discount factor and penalizes the rewards in the future, incorporating
the possible uncertainty and variance of the future rewards.

We will also define action-value Qπ(s,a) which is for a similar purpose as state-
value function but predicts the reward for action and state following the policy π.

Qπ(s,a) = E[Gt |St = s,At = a]

The decomposition of state-value and action-value function replays on Bellman
equations [13]. The decomposition of state-value function is

Vπ(s) = E[Gt |St = s]

Vπ(s) = E[Rt+1 + γRt+2 + γ
2Rt+3 + ...|St = s]

Vπ(s) = E[Rt+1 + γ(Rt+2 + γRt+3 + ...)|St = s]

Vπ(s) = E[Rt+1 + γGt+1|St = s]

Vπ(s) = E[Rt+1 + γV (St+1)|St = s]

Similarly, this method is applicable to action-value function

Qπ(s,a) = E[Rt+1 + γV (St+1)|St = s,At = a]

Qπ(s,a) = E[Rt+1 + γEα∼πQ(St+1,a)|St = s,At = a]

MFSDSAI, IIT ROORKEE 9
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3.1.2 State and Action Value Functions

Policy Gradient [14] is a method for solving the reinforcement learning problem and
learning the policy that maximizes the rewards. We define a set of parameters θ that
directly models the policy, πθ(a|s).

To optimize θ for the best reward, we define an objective function [14] as

J(θ) = ∑
s∈S

dπθ
(s)Vπθ

(s)

where dπθ
(s) is stationary distribution of Markov chain for πθ , the probability of

ending in a given state [15]. The objective function J(θ) optimizes the θ parameters
via gradient ascent [16].

θt+1 = θt +α∇J(θt)

However, computing ∇J(θt) is tricky because it depends on the action selection
and the stationary distribution of states [17]. Policy gradient can be simplified using
Policy Gradient Theorem by Sutton et al [14].

The proof of policy gradient theorem is quite long and complicated, but you may
go through it in this article [17] which is inspired by Sutton and Barto [12] . Policy
gradient is simplified to the form as

∇J(θt) = E[∇ lnπ(a|s,θ)Qθ(s,a)]

3.1.3 REINFORCE

REINFORCE algorithm, proposed by Williams [18] in 1992, is a policy gradient
method to update the policy parameter θ.

Let us define the additional terms required by the REINFORCE algorithm. We
define a trajectory τ which is a sequence of states, actions, and rewards. Episode is
a trajectory which ends at the terminal state St

τ = (S0,A0,R0,S1,A1,R1, ...)

REINFORCE algorithm computes the policy gradient as follows

∇J(θ) = E[Gt∇ lnπ(At |St ,θ)]

MFSDSAI, IIT ROORKEE 10
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It is a simplification of a regular policy gradient because Qπ(s,a)=∇[Gt |St = s,At =

a] and in REINFORCE algorithm we rely on a full trajectory where we can estimate
Gt based on Monte-Carlo method which is describe in this article.

Algorithm 1 REINFORCE algorithm
1: Result: Updated θ that maximises reward
2: Initialize θ at random
3: Generate one episode S0,A0,R0, ...,St
4: for all t = 1,2, ...,T do
5: Estimate the return Gt since the time step t
6: θ← θ+αγtGt∇ lnπ(At |St ,θ)
7: end for

3.2 Recurrent Neural Network

Recurrent Neural Network(RNN) is a kind of neural network with memory that
works best with sequential data. Whenever the points in the dataset are dependent on
the other points in the dataset, the data is said to be Sequential data. A conventional
neural network actually makes the assumption that the data is not sequential and that
each data point is independent of all the others. As a result, the inputs are examined
separately, which may be problematic if the data contains dependencies. Google
Voice Search and Apple’s Siri which deals with sequential data employ RNN. A
basic understanding of forward propagation and backward propagation is required
before diving deeper into RNNs.

3.2.1 Forward and Backward Propagation

Data moves forward from the input layer through the hidden layers and onto the
output layer. It could have one or more hidden layers and each node in the layers has
complete connectivity. We do forward propagation to get the output of the model
and check its accuracy and get the error. Training the neural network is done using
the backward propagation method. Deep neural networks may be used if there are
numerous hidden layers. We compute the error after forward propagation is finished.
The network then receives a back-propagation of this error to update the weights.

To determine the partial derivatives of the error (loss function) with respect
to the weights, we go back through the neural network. This partial derivative is now
multiplied by the learning rate to calculate step size. To determine new weights, the
step size is added to the initial weights. A neural network learns in this manner while
being trained.

MFSDSAI, IIT ROORKEE 11
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3.2.2 Basics of Recurrent Neural Network

A feed-forward neural network with internal memory is referred to as a recurrent
neural network. The output of the current input depends on the previous computa-
tion, making RNNs recurrent in nature because they carry out the same function for
every data input. The output is created, copied, and then sent back into the recurrent
network. It takes into account both the current input and the output that it has learned
from the prior input when making a decision.

RNNs can process input sequences using their internal state (memory), in con-
trast to feed-forward neural networks. They can therefore be used for tasks like
connected, unsegmented handwriting recognition or speech recognition. All of the
inputs in other neural networks operate independently of one another. In a nutshell,
the present and recent past serve as RNN’s two inputs. This is significant because
an RNN can perform tasks that other algorithms are unable to because the data se-
quence contains essential information about what will happen next.

3.2.3 Different Types of RNNs

One to One

As seen in the image above, a one-to-one RNN (Tx = Ty = 1) is the most fun-
damental and traditional type of neural network, producing a single output from a
single input. It also goes by the name ”Vanilla Neural Network.” It is employed to
address typical machine learning issues.

One to Many

A type of RNN architecture called one to many (Tx = 1,Ty > 1) is used when
there are multiple outputs for a single input. The creation of music would be a
simple example of its application. RNN models are employed in music generation
models to produce multiple musical pieces from a single musical note (single input).

Many to One

A typical example is the many-to-one RNN architecture (Tx > 1,Ty = 1) used
in sentiment analysis models. As the name implies, this type of model is utilized
when more than one input is needed to produce a single output. For example, the
sentiment analysis model for Twitter. A text input (words as multiple inputs) in that
model provides its fixed sentiment (single output). Another illustration would be a
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system for assigning movie ratings that uses review texts as input to assign a number
between 1 and 5 to a film.

Many to Many

Many-to-many RNN architecture (Tx > 1,Ty > 1) accepts multiple inputs and pro-
duces multiple outputs, but many-to-many models can be of two different types, as
shown in the above figure:

• When input and output layers are the same sizes, this is referred to. This can
also be thought of as every input having an output, and named entity recognition
is a common application.

Tx = Ty

• The most prevalent use of this type of RNN architecture is in machine transla-
tion. Many-to-Many architecture can also be represented in models where the
input and output layers are of different sizes. For instance, the three magical
English words ”I Love You” are translated into only two in Spanish, ”te amo.”
Because a non-equal Many-to-Many RNN architecture is at work in the back-
ground, machine translation models are therefore capable of returning words
that are either more or less than the input string.

Tx! = Ty

Figure 3.2: Different Types of RNNs
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3.2.4 Gradient Issues in RNN Architecture

A gradient is an input-relative partial derivative. A gradient calculates how much
a function’s output will change if its inputs are slightly altered. A gradient is similar
to a function’s slope in terms of conceptualization. The steeper the slope and the
higher the gradient, the more quickly a model can learn. The model halts learning
if the slope is almost zero. A gradient merely quantifies the change in all weights
relative to the error change. An RNN algorithm’s gradient can occasionally grow
too small or too large during training. As a result, in this circumstance, training an
RNN algorithm becomes very challenging. This leads the poor performance, low
accuracy and a prolonged training phase.

Exploding Gradient

This problem arises when we give the weights a high priority. In this situation,
gradient values become excessively large, and the slope essentially grows exponen-
tially. The following techniques can be used to resolve this:

• Identity initialization

• Truncated backward propagation

• Gradient clipping

Vanishing Gradient

This problem happens when the values of a gradient are too small, and as a result,
the model stops learning or learns very slowly. The following techniques can be
used to resolve this:

• Initialization of weights

• Selecting the appropriate activation function

• LSTM (Long Short-Term Memory) is the best method for resolving the vanish-
ing gradient problem

3.2.5 Long Short Term Memory Networks(LSTM)

Sometimes, all we need to do to complete the task at hand is to look at the most
recent data. Consider a language model that uses the words before it to attempt to
predict the word that will come next. There is no need for additional context if we
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are attempting to determine the final word in ”the clouds are in the sky” because it
is fairly clear that sky will come after it. RNNs can learn to use past information in
such circumstances, where there is close proximity between certain information and
the location where it is required.

But there are also cases where we need more context. Consider trying to predict
the last word in the text “I grew up in France. . . I speak fluent French.” Recent
information suggests that the next word is probably the name of a language, but
if we want to narrow down which language, we need the context of France, from
further back. It’s entirely possible for the gap between the relevant information and
the point where it is needed to become very large. Unfortunately, as that gap grows,
RNNs become unable to learn to connect the information. To address this problem
LSTMs are introduced.

Long Short-Term Memory Networks, more commonly referred to as ”LSTMs,”
are a unique class of RNN that can recognize long-term dependencies. They were
first presented by Hochreiter & Schmidhuber (1997), and numerous authors refined
and popularised them in subsequent works. They are now widely used and perform
incredibly well when applied to a wide range of issues. Intentionally, LSTMs are
created to avoid the long-term dependency issue. They don’t struggle to learn; rather,
remembering information for extended periods of time is practically their default
behaviour. All recurrent neural networks take the shape of a series of neural network
modules that repeat.

Figure 3.3: The repeating module in an LSTM Network

Each line in the above diagram carries an entire vector from one node’s output to
another’s input. The yellow boxes are learned neural network layers, and the pink
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circles are pointwise operations like vector addition. Concatenation is indicated by
lines merging, while lines forking indicate that their content has been copied and is
being sent to various locations.

The Core Idea behind LSTM

The horizontal line that runs through the top represents the cell state is key to
LSTMs. The cell state resembles a conveyor belt in some ways. With only a few
minor linear interactions, it proceeds directly down the entire chain. Information
can very easily continue to flow along it unchanged.The LSTM can modify the cell
state by removing or adding information, which is carefully controlled by gates.
Information can pass through gates on a purely optional basis. They consist of a
pointwise multiplication process and a layer of sigmoid neural networks. Indicating
how much of each component should be allowed through, the sigmoid layer outputs
numbers between zero and one. When a value is zero, ”let nothing through,” and
when a value is one, ”let everything through,” respectively. These three gates serve
to safeguard and regulate the cell state in an LSTM.

Step-by-Step LSTM Walk Through

Choosing which information from the cell state to discard is the first step in our
LSTM. The ”forget gate layer,” a sigmoid layer, decides on this. It examines ht −1
and xt , and for each number in the cell state Ct − 1, it outputs a number between 0
and 1. A 1 means ”entirely keep this,” and a 0 means ”entirely get rid of this.”

Figure 3.4: The Forget Gate Layer

The next step is to choose the new data that will be kept in the cell state. Two parts
make up this. The ”input gate layer,” a sigmoid layer, first determines which values
will be updated. The state is then updated with a vector of potential new values,
Ĉt , created by a tanh layer. These two will be combined in the subsequent step to
produce an update to the state.
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Figure 3.5: The Input Gate Layer

It’s time to switch from the previous cell state(Ct−1) to the current cell state(Ct).
We just need to carry out what we decided to do in the earlier steps. We multiply the
previous state by ft while omitting the earlier items on our list of things to forget.
Then it ∗Ĉt is added. According to how much we decided to update each state value,
these are the new candidate values.

Figure 3.6: Updating the Old Cell State

Finally, we must choose what we will output. This output, though filtered, will
be based on the state of our cell. We first run a sigmoid layer to determine which
portions of the cell state will be output. Then, in order to output only the portions we
decided to, we multiply the cell state by the output of the sigmoid gate after passing
the cell state through tanh (to push the values to be between 1 and 1).

Figure 3.7: The Output Gate Layer

3.2.6 Gate Recurrent Unit Networks(GRUs)

GRUs are an enhanced form of the traditional recurrent neural network. The so-
called update gate and reset gate are used by GRU to address the vanishing gradient
issue that plagues a standard RNN. In essence, these two vectors determine what
data should be sent to the output. They have the unique ability to be trained to
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retain information from the past without having it fade away over time or to discard
information that is unrelated to the prediction.

Figure 3.8: Gate Recurrent Unit

Update Gate

The update gate zt for time step t is calculated using the formula:

zt = σ(Wxt +Uht−1)

When xt is connected to the network unit, its weight W (z). The same is true
for ht−1 which is multiplied by its own weight U(z) and contains information for
the previous t-1 units. Together, the two results are added, and the result is then
squeezed between 0 and 1 using a sigmoid activation function. The update gate
assists the model in deciding how much historical data from earlier time steps should
be transmitted to the future. That is really potent because the model has the option of
copying all historical data and removing the possibility of vanishing gradient issues.

Reset Gate

In essence, the model uses this gate to determine how much of the past data should
be forgotten.

rt = σ(Wxt +Uht−1)

This formula is the same as the one for the update gate. The difference comes in
the weights and the gate’s usage.
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Current Memory Content

A new memory content is introduced that uses the reset gate to store the necessary
historical data. The formula is as follows:

h′t = tanh(Wxt + rt⊙Uht−1)

• Multiply the input xt with a weight W and ht−1 with a weight U .

• Calculate the Hadamard (element-wise) product between the reset gate rt and
Uht−1. Depending on that, we’ll know what to take out of the earlier time steps.
Consider the situation where we need to use sentiment analysis to determine a
reviewer’s opinion of a book. The text begins, ”This is a fantasy book which
illustrates....” and ends with, ”I didn’t quite enjoy the book because I think it
captures too many details,” a few paragraphs later. We only need the final sec-
tion of the review to gauge how satisfied readers were overall with the book. In
that case, as the neural network gets closer to the text’s conclusion, it will learn
to assign rt vector values that are close to 0, wiping out the earlier sentences
and concentrating only on the final ones.

• Add the results of the above steps

• Apply the nonlinear activation function tanh.

Final Memory at Current Time Step

The network must calculate ht , a vector that stores data for the current unit and
transmits it throughout the network, as the final step. That requires the update gate,
which is necessary. It decides what to collect from the previous steps (ht−1) and
what to collect from the current memory content (h′t). The process is as follows:

ht = zt⊙ht−1 +(1− zt)⊙h′t

• The update gates zt and ht−1 should be multiplied element-by-element.

• To (1− zt) and h′t , apply element-wise multiplication.

• Add the outcomes of the above steps.
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Let’s use the book review as an example. This time, the text’s opening paragraph
contains the most pertinent information. The model can be trained to maintain the
majority of the prior knowledge while setting the vector zt close to 1. The last section
of the review, which explains the book plot, will be ignored because it is irrelevant
to our prediction because 1− zt will be close to 0 because zt will be close to 1 at
this time step. We can now see how GRUs use their update and reset gates to store
and filter the information. As a result, the vanishing gradient problem is resolved
because the model does not continually wash out new input, but rather retains it and
passes it on to the network’s subsequent time steps. They can perform incredibly
well even in challenging situations if properly trained.

3.3 Attention

The attention mechanism is a concept used in machine learning and neural net-
works, specifically in the field of natural language processing (NLP). It refers to a
mechanism that allows a model to focus on specific parts of the input sequence when
generating or processing the output.

In NLP tasks such as machine translation, the input and output sequences
can have varying lengths, making it challenging for traditional models to effectively
capture long-range dependencies. The attention mechanism addresses this issue by
enabling the model to assign different weights or attention scores to different parts
of the input sequence.

In simple terms, the attention mechanism allows the model to ”pay atten-
tion” to relevant information in the input sequence while generating the output. It
achieves this by computing a set of attention scores that reflect the importance or rel-
evance of each element in the input sequence to each element in the output sequence.
These attention scores determine how much attention or focus the model should give
to each input element when generating the corresponding output element.

The attention mechanism provides a way for the model to selectively at-
tend to the most relevant parts of the input sequence, making it more effective at
capturing dependencies and improving the quality of generated outputs. It has been
widely used in various NLP tasks, including machine translation, text summariza-
tion, question answering, and more.

There are several different types of attention mechanisms commonly used
in machine learning and natural language processing. Here are some of the most
common types:
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3.3.1 Soft Attention

Soft attention, also known as additive attention, is a type of attention mechanism
where the attention scores are computed by taking the dot product between a query
vector and a set of key vectors. The dot product is then passed through a softmax
function to obtain normalized attention weights. Soft attention allows the model to
distribute attention across all elements of the input sequence.

3.3.2 Hard Attention

Hard attention, also known as deterministic attention or content-based attention, is
a type of attention mechanism that selects a single element from the input sequence
based on the attention scores. Unlike soft attention, which computes a weighted sum
of all input elements, hard attention directly chooses a single element to attend to.
Hard attention can be more computationally efficient but requires a discrete selection
process, which makes it non-differentiable and less suitable for end-to-end training.

3.3.3 Scaled Dot-Product Attention

Scaled dot-product attention is a variant of soft attention commonly used in trans-
former models. It computes attention scores by taking the dot product between a
query vector and key vectors, similar to soft attention. However, in scaled dot-
product attention, the dot products are scaled by the square root of the dimensionality
of the query vector, which helps stabilize the gradients during training.

3.3.4 Self-Attention

Self-attention, also known as intra-attention or intra-modality attention, is a type of
attention mechanism that operates within a single sequence. It allows the model to
attend to different positions within the sequence when computing the representation
of each element. Self-attention is a fundamental component of transformer models
and has been highly successful in various NLP tasks.

3.3.5 Multi-Head Attention

Multi-head attention is an extension of self-attention that introduces multiple sets of
queries, keys, and values. It computes attention scores and produces output repre-
sentations in parallel across different ”attention heads.” Each attention head captures
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different dependencies and information from the input sequence, allowing the model
to learn more diverse and nuanced relationships.
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Chapter 4

Problem Formulation

The Vehicle Routing Problem (VRP) can be formulated as a Markov Decision
Process (MDP) to be solved using reinforcement learning (RL) techniques. In this
formulation, we consider a fleet of vehicles and a delivery locations that need to be
serviced.

1. State Space

• Vehicle locations: The current positions of vehicles.

• Remaining deliveries: The set of delivery locations that are yet to be ser-
viced

2. Action Space

• Vehicle movements: Actions representing the movement of a vehicle to a
neighboring location.

3. Rewards

• Immediate rewards :Negative of the vehicle distance travelled

4. Transition Dynamics

• Vehicle movements: The transition from one state to another occurs when
a vehicle moves from its current location to a neighboring location.

• Load allocations: The transition occurs when a delivery location is as-
signed to a vehicle, resulting in an updated state with a reduced set of
remaining deliveries.

5. Termination

• The episode terminates when all deliveries have been completed.
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6. Objective

• The goal is to learn an optimal policy that maximizes the overall rewards
accumulated during the delivery process while satisfying all constraints.

By formulating the VRP as an RL problem, we aim to train an RL agent to learn
a policy that can make effective decisions regarding vehicle movements and load
allocations, optimizing the overall delivery process. The learned policy should adapt
to different problem instances and provide efficient and high-quality solutions for the
VRP.

4.1 VRP modeled as a Markov Decision Process

The problem is modeled as a MDP (Markov Decision) . The nodes correspond to
customers, and the depot, which are connected through a set of paths. State space:
Location of nodes, both of depot and customer nodes and associated demand and
vehicle location and capacity Action space: Possible Node that we can visit in next
step Reward: Negative of the total vehicle distance travelled Location of node is
static element where as demand of node is dynamic element

4.2 Model Architecture

Our policy model consists of a recurrent neural network (RNN) decoder coupled
with an attention mechanism. At each time step, the embeddings of the static ele-
ments are the input to the RNN decoder, and the output of the RNN and the dynamic
element embeddings are fed into an attention mechanism, which forms a distribu-
tion over the feasible destinations that can be chosen at the next decision point For
the embedding, we use 1-dimensional convolution layers for the embedding, each
customer location is also embedded into a vector of size 128 and demand is mapped
to a vector in a 128-dimensional vector space and used in the attention layer. We
start from an arbitrary input in X0, where we use the pointer y0 to refer to that input.
At every decoding time t(t = 0,1, ...) , yt+1 points to one of the available inputs Xt

, which determines the input of the next decoder step; this process continues until a
termination condition is satisfied. The termination condition is problem-specific,
showing that the generated sequence satisfies the feasibility constraints. For in-
stance, in the VRP that we consider in this work, the terminating condition is that
there is no more demand to satisfy. This process will generate a sequence of length
T,Y = {yt , t = 0,1, ...,T}, possibly with a different sequence length compared to the
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input length M (M is Number of customer). This is due to the fact that, for example,
the vehicle may have to go back to the depot several times to refill. We also use the
notation Yt to denote the decoded sequence up to time t i.e., Yt = {y0,y1, ...,yt} . We
are interested in finding a stochastic policy π which generates the sequence Y in a
way that minimizes a loss objective while satisfying the problem constraints. The
optimal policy π∗ will generate the optimal solution with probability 1. Our goal is
to make π as close to π∗ as possible.

4.3 Input Data

In our approach, we assume that the node locations and demands are randomly gen-
erated from a fixed distribution. To be more specific, the customer and depot loca-
tions are generated randomly within the unit square [0, 1] × [0, 1]. This allows for a
diverse range of spatial arrangements in the problem instances.

For simplicity and ease of explanation, we assume that the demand of
each node is a discrete number, ranging from 1 to 9. These demand values are
chosen uniformly at random from this discrete range. It’s worth mentioning that the
demand values can be generated from any distribution, including continuous ones,
depending on the specific requirements and characteristics of the problem at hand.

By incorporating random generation of node locations and demands, our
approach allows for the exploration of various problem instances with different spa-
tial distributions and demand patterns. This enables us to evaluate the model’s per-
formance across a wide range of scenarios and assess its ability to handle diverse
routing challenges.

4.4 Training

To train the network, we use well-known policy gradient approaches. To use these
methods, we parameterize the stochastic policy π with parameters θ, where θ is vec-
tor of all trainable variables used in embedding, decoder, and attention mechanism.
Policy gradient methods use an estimate of the gradient of the expected return with
respect to the policy parameters to iteratively improve the policy. In principle, the
policy gradient algorithm contains two networks:

• an actor network that predicts a probability distribution over the next action at
any given decision step,
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• a critic network that estimates the reward for any problem instance from a given
state.

Let us consider a family of problems, denoted by M , and a probability distribution
over them, denoted by ΦM . During the training, the problem instances are generated
according to distribution ΦM . We also use the same distribution in the inference to
produce test examples.

We have two neural networks with weight vectors θ and φ associated with
the actor and critic, respectively. We draw N sample problems from M and use
Monte Carlo simulation to produce feasible sequences with respect to the current
policy πθ. We adopt the superscript n to refer to the variables of the nth instance.
After termination of the decoding in all N problems, we compute the corresponding
rewards as well as the policy gradient in step 14 to update the actor network. In
this step, V (Xn

0 ;φ) is the the reward approximation for instance problem n that will
be calculated from the critic network. We also update the critic network in step 15
in the direction of reducing the difference between the expected rewards with the
observed ones during Monte Carlo roll-outs.

Algorithm 2 REINFORCE algorithm
1: Initialize the actor network with random with random weights θ and critic network with random

weights φ

2: for all iteration = 1,2,... do
3: Reset gradients : dθ← 0, dφ← 0
4: Sample N instances according to ΦM
5: for all n = 1,2, ...,N do
6: Initialize step counter t← 0
7: repeat
8: choose yn

t+1 according to the distribution P(yn
t+1|Y n

t ,X
n
t )

9: observe new state Xn
t+1

10: t← t +1
11: until termination condition is satisfied
12: compute reward Rn = R(Y n,Xn

0 )
13: end for
14: dθ← 1

N ∑
N
n=1(R

n−V (Xn
0 ;φ))∇θ logP(Y n|Xn

0 )

15: dφ← 1
N ∇φ(Rn−V (Xn

0 ;φ))2

16: update θ using dθ and φ using dφ

17: end for

4.5 Implementation Details

In our approach, we incorporate a 1-dimensional convolutional layer for embedding
purposes. This layer takes the input sequence length as its width, the number of
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filters as D, and the number of in-channels as the number of elements in the input x.
We have observed that training the model without an embedding layer consistently
results in inferior solutions.

One possible explanation for this observation is that the policy network is
capable of extracting valuable features from the high-dimensional input representa-
tions more effectively when an embedding layer is utilized. The embedding layer
serves as an affine transformation, allowing the model to learn and capture essential
information from the input sequence. It is important to note that the embedding layer
does not necessarily preserve the exact proportional distances between the embed-
ded inputs, in comparison to the original 2-dimensional Euclidean distances.

By employing the embedding layer, we provide the model with a more
efficient and effective representation of the input sequence. This enables the policy
network to better exploit the relevant features and dependencies in the data, ulti-
mately leading to improved performance and superior solutions.

In our decoder architecture, we incorporate a single layer of LSTM RNN
with a state size of 128. This LSTM layer processes the customer locations, which
are embedded into a shared vector of size 128. Similarly, we employ embeddings
for the dynamic elements, such as the demand (di

t) and the remaining vehicle load
after visiting node i (lt − di

t ). These dynamic elements are also mapped to 128-
dimensional vectors and used in the attention layer.

In the critic network, we first utilize the output probabilities from the actor
network to compute a weighted sum of the embedded inputs. This weighted sum
is then passed through two hidden layers: a dense layer with ReLU activation and
another linear layer with a single output.

To initialize the variables in both the actor and critic networks, we use
Xavier initialization. During training, we employ the REINFORCE Algorithm and
the Adam optimizer with a learning rate of 10−4. The batch size (N) is set to 128,
and we clip the gradients when their norm exceeds 2. Additionally, we apply dropout
with a probability of 0.1 specifically in the decoder LSTM.

These design choices and training configurations contribute to the overall
performance of our model in effectively learning and generating optimal routes for
the VRP.
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4.6 Route Generation with an example

We will explain the route generation with the help of an example. In shown below
Figure 5.1 we have customers as a circle and depot as a rectangle with their location
and demand and vehicle has max capacity limit of 10 units.

Figure 4.1: Example of CVRP instance with 4 customers and a
depot. Customer are denoted by circle and depot is denoted by
rectangle and demand of customer written inside in circle

State space: Location of nodes, both of depot and customer nodes and associated
demand Action space: Possible Node that we can visit in next step. So, in this case
is possible action are 5(depot, customer with 9 demands, customer with 4 demands,
customer with 3 demands, customer with 2 demand) Reward: Negative of the total
vehicle distance travelled At time step t = 0 all vehicle is at depot so input to RNN
is depot location, feasible action is 4 (customer with 9 demand, customer with 4
demand, customer with 3 demand, customer with 2 demand) and RNN input will
depot and using attention mechanism we will generate probabilities for action which
will explained later.

Figure 4.2: Proposed model at time step t = 0
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Let us assume that max probability is for customer with demand 9, so we send
vehicle at location of customer, so at location of this customer we are time step t = 1
so for this case we feed location of vehicle to RNN and generate the probability as
shown below.

Figure 4.3: Proposed model at time step t = 1

Let us assume that max probability is for depot, so we send vehicle at location of
depot to refill, and we are time step t = 2 so for this case we feed location of vehicle
to RNN and generate the probability and then again select the customer which has
maximum probability and we will till all feasible customer are not serviced and
generate the route which shown below.

Figure 4.4: Proposed model at time step t = T

Now we discuss how we generate the probability using attention and RNN. We
first generate embedding of location of each node and demand then we input static
embedding to RNN which generate ht and we state embedding and dynamic embed-
ding to attention and calculate at with help of ht and the compute context vector and
the using context vector we generate probabilities for actions.

MFSDSAI, IIT ROORKEE 29



CHAPTER 4. PROBLEM FORMULATION

Figure 4.5: Proposed model. The embedding layer maps the in-
puts to a high-dimensional vector space. On the right, an RNN
decoder stores the information of the decoded sequence. Then, the
RNN hidden state and embedded input produce a probability dis-
tribution over the next input using the attention mechanism
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Chapter 5

Results

This chapter presents the outcomes of our experiments focused on solving the
Capacitated Vehicle Routing Problem (CVRP) through the application of Deep Re-
inforcement Learning. We conducted extensive tests on problem instances featuring
10, 20, and 50 customer nodes, each associated with different vehicle capacities of
20, 30, and 40, respectively. For instance, VRP10 comprises 10 customers with a
vehicle capacity of 20. In order to tackle these diverse problem sets, we trained
individual models for each specific scenario.

5.1 One Example of each model

In this study, we conducted individual model training for each problem using
a randomly generated data set consisting of 100,000 instances for a duration of 10
epochs. Following the training process, we proceeded to generate new test instances.
By leveraging the trained models, we obtained results that were then compared using
OR Tool—an industry-standard solution provided by Google.

In order to compare the results between our model and OR Tools, we uti-
lized the Python programming language and executed both sets of code on the same
machine. However, we encountered a few discrepancies in the implementation of
OR Tools for the VRP. Firstly, OR Tools only accepts integer locations for the cus-
tomers and depot, whereas our problem was defined on the unit square. To address
this, we resolved the issue by scaling up the problem. We multiplied all locations by
104, resulting in a redefined problem space of [0,104]× [0,104]. After solving the
problem, we scaled down the solutions and tours to obtain results for the original
problem.

The second difference arises from the fact that OR Tools is designed for a
VRP with multiple vehicles, each capable of having at most one tour. To accommo-
date this requirement, we provided a large number of vehicles to OR Tools to allow
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it to solve the problem freely. In contrast, our RL model does not require specifying
the number of vehicles.

The third difference is related to the time limit for OR Tools to solve the
VRP. We set either a specific time limit or the number of solutions that OR Tools can
produce. For this study, we set the number of solutions to 650, ensuring sufficient
exploration of the solution space within the given constraints.

5.1.1 For VRP 10

In our study, we trained a model specifically for instances of the VRP10 problem,
which consists of 10 customers and a vehicle capacity of 20. To evaluate the per-
formance of the model, we randomly generated test instances. Figure 5.1 provides
a visual representation of one such test instance, where the red dots represent the
customer locations, the black star represents the depot location, and the paths con-
necting them are generated using our RL model.The routes generated by our RL
model resulted in a total distance traveled by the vehicles of 3.50 meters.

Figure 5.1: Routes Generated using RL VRP10

To compare the results with OR Tools, we utilized the same test instance
and passed it to OR Tools to generate the routes. Figure 5.2 illustrates the routes
generated by OR Tools for the given test instance. The total distance traveled by the
OR Tools method is calculated to be 3.38 meters.
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Figure 5.2: Routes Generated using OR Tools VRP10

5.1.2 For VRP20

In our study, we trained a model specifically for instances of the VRP10 problem,
which consists of 20 customers and a vehicle capacity of 30. To evaluate the per-
formance of the model, we randomly generated test instances. Figure 5.3 provides
a visual representation of one such test instance, where the red dots represent the
customer locations, the black star represents the depot location, and the paths con-
necting them are generated using our RL model.The routes generated by our RL
model resulted in a total distance traveled by the vehicles of 5.00 meters.

Figure 5.3: Routes Generated using RL VRP20

To compare the results with OR Tools, we utilized the same test instance
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and passed it to OR Tools to generate the routes. Figure 5.4 illustrates the routes
generated by OR Tools for the given test instance. The total distance traveled by the
OR Tools method is calculated to be 5.34 meters.

Figure 5.4: Routes Generated using OR Tools VRP20

5.1.3 For VRP50

In our study, we trained a model specifically for instances of the VRP50 problem,
which consists of 50 customers and a vehicle capacity of 40. To evaluate the per-
formance of the model, we randomly generated test instances. Figure 5.5 provides
a visual representation of one such test instance, where the red dots represent the
customer locations, the black star represents the depot location, and the paths con-
necting them are generated using our RL model.The routes generated by our RL
model resulted in a total distance traveled by the vehicles of 10.01 meters.
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Figure 5.5: Routes Generated using RL VRP50

To compare the results with OR Tools, we utilized the same test instance
and passed it to OR Tools to generate the routes. Figure 5.7 illustrates the routes
generated by OR Tools for the given test instance. The total distance traveled by the
OR Tools method is calculated to be 10.44 meters.

Figure 5.6: Routes Generated using OR Tools VRP50

As observed, the routes generated by both the RL model and OR Tools exhibit
similarities, indicating comparable performance. Additionally, the number of vehi-
cles used by both approaches is nearly identical. Notably, the total distance traveled
by the OR Tools method is slightly lower than that of the RL model, although the
difference is not significant. These findings suggest that both methods are effective
in solving the problem, with OR Tools demonstrating a slightly more efficient route
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configuration in this particular instance.

5.2 Average comparison

Now that we have trained models for VRP10, VRP20, and VRP50, we can proceed
with comparing the results between the RL model and OR Tools on average. We
generated 1000 instances for each problem and obtained the routes using both meth-
ods. We then calculated the average distance traveled by the vehicles, the standard
deviation of the distances, and the time taken to obtain the routes for each instance.
The results are summarized in Table 5.1.

Baseline Mean Std Time(sec)
VRP10, Cap20 RL 5.84 1.03 0.006
VRP10, Cap20 OR Tool 5.51 1.32 0.901
VRP20, Cap30 RL 7.06 0.96 0.007
VRP20, Cap30 OR Tool 6.83 1.16 1.886
VRP50, Cap40 RL 12.37 1.38 0.016
VRP50, Cap40 OR Tool 11.64 1.61 7.506

Table 5.1: Average tour length, standard deviations of the tours and the average solution time (in seconds)
using different baselines over a test set of size 1000

Upon reviewing Table 5.1, it becomes apparent that the average distance traveled
by OR Tools is slightly less than that of the RL model. However, the difference
between the two methods is not substantial. In contrast, the average time taken to
solve a single problem is significantly lower for the RL model compared to OR
Tools. This discrepancy suggests that RL models exhibit a notable advantage in
terms of computational efficiency when solving VRP instances.
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Figure 5.7: Average time taken to solve VRP

Additionally, Figure 5.7 further supports this observation. As the number of cus-
tomers increases, the average time taken to solve the VRP for OR Tools exhibits an
exponential growth pattern. On the other hand, the RL model’s average time taken
does not display such exponential behavior. This finding underscores the advantage
of RL models in tackling VRP instances, as they are capable of maintaining more
consistent computational performance even as problem complexity increases.

5.3 Comparison on standard data set

Up until now, our testing involved randomly generated test instances. However,
we will now evaluate the performance of the VRP model on standard instances pro-
vided by Augerat. These instances consist of varying numbers of customers, and
the customer locations are within a unit square box. Numerous standard methods
have been applied to solve these instances, resulting in the identification of the best-
known solutions to date.

In this next phase, we will employ the trained VRP50 model to solve VRPs with
up to 50 customers. This means that we will apply the VRP50 model to solve VRPs
with the same number of customers or less, utilizing its capabilities to handle larger
problem sizes.To transform smaller VRPs into VRP50 instances, we can add addi-
tional ”fake” customers with zero demand. These fake customers serve the purpose
of expanding the problem size to match the VRP50 format. By introducing these
zero-demand customers, we ensure that the number of customers in the smaller
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VRPs aligns with the VRP50 structure, allowing us to apply the trained VRP50
model consistently across all instances. Here are result that we get for solving stan-
dard instance in Table 5.2

Instances Best Solution
Distance
for
RL(m)

Distance
for OR
Tool (m)

time for
RL (sec)

time for
OR (sec)

RL Gap
%

OR Tool
Gap %

Multiplier n

B-n31-k5.vrp 672 747.3 676.1 0.259 11.969 11.2 0.608 46.28 31
A-n32-k5.vrp 784 1101.7 787.1 2.921 13.58 40.53 0.393 4.65 32
A-n33-k5.vrp 661 760.9 671.6 0.232 14.902 15.12 1.601 64.11 33
A-n33-k6.vrp 742 951.3 743.4 0.286 15.151 28.2 0.194 52.97 33
A-n34-k5.vrp 778 918.3 788.8 0.21 11.47 18.04 1.388 54.58 34
B-n34-k5.vrp 788 894.4 792.5 0.256 13.739 13.5 0.565 53.57 34
A-n36-k5.vrp 799 1051.4 810.4 0.307 14.305 31.58 1.423 46.64 36
A-n37-k5.vrp 669 859.2 672.5 0.263 14.232 28.42 0.523 54.05 37
A-n37-k6.vrp 949 1156.3 976.4 0.276 15.4 21.84 2.887 55.81 37
A-n38-k5.vrp 730 961.3 762.8 0.367 12.834 31.68 4.487 34.97 38
A-n39-k6.vrp 831 1002.4 847.3 0.316 13.806 20.63 1.965 43.69 39
A-n39-k5.vrp 822 1334.1 836.1 0.321 12.168 62.29 1.721 37.96 39
B-n43-k6.vrp 742 975.4 762.4 0.342 11.727 31.45 2.749 34.24 43
A-n44-k6.vrp 937 1139.6 987.8 0.292 15.248 21.62 5.418 52.23 44
A-n45-k6.vrp 944 1085.4 961.8 0.247 12.624 14.98 1.883 51.1 45
A-n45-k7.vrp 1146 1302.9 1162.1 0.293 13.971 13.69 1.402 47.7 45
B-n45-k5.vrp 751 1060.9 765.3 0.295 10.549 41.27 1.899 35.75 45
A-n46-k7.vrp 914 1160.7 933.3 0.371 12.452 26.99 2.111 33.52 46
A-n48-k7.vrp 1073 1296.5 1102.5 0.274 11.239 20.83 2.749 40.95 48

Table 5.2: Result summary for solving standard instance using RL and OR Tools

Table 5.2 presents a summary of the results. In this table, the ”instances” column
refers to unique instance IDs provided by the author. The ”best solution” column
displays the currently known best solution for each instance. The ”gap” column
represents the difference between the best solution and the solution obtained by
the method being evaluated. The ”multiplier” column indicates how many times
faster the RL method is compared to the OR Tool approach in solving each instance.
Lastly, the column labeled ”n” signifies the number of customers in each instance.

After examining Table 5.2, it is evident that the gap between the RL method and
the best-known solution is larger compared to the gap between the OR Tool and the
best-known solution. However, it is crucial to consider that the RL method achieves
significantly faster solution times compared to the OR Tool. It is important to note
that the results in Table 5.2 are obtained using the VRP50 model, which implies that
the RL method is solving instances with a larger number of customers.

Taking all these factors into account, the RL method demonstrates a trade-
off between solution quality (as reflected by the gap) and computational efficiency
(as indicated by the significantly lower solution times). These findings emphasize
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the need to consider the specific requirements and constraints of the problem at hand
when evaluating the performance of different approaches.

Figure 5.8: Variation between and number of customer and size
of circle shows time taken solve the VRP

As the number of customers increases, the gap between the RL method and the
best-known solution tends to decrease. Additionally, when the problem instances
align closely with the VRP50 format on which our model is trained, the gap becomes
smaller. This observation suggests that the RL method becomes more accurate and
effective as it encounters problem instances that closely resemble those seen during
training.

Furthermore, Figure 5.8 highlights an interesting finding: the RL method
outperforms the OR Tool in terms of solution time. This demonstrates the compu-
tational efficiency of the RL approach when compared to traditional optimization
methods like OR Tools.

An intriguing aspect to consider is the potential application of training dif-
ferent sizes of VRP models. During inference, if we encounter a problem with a
different number of customers, we can utilize clustering algorithms to approximate
the nearest smaller or larger VRP model for solving the given instance. This ap-
proach allows for more flexibility and adaptability when applying trained models to
real-world scenarios with varying problem sizes.

5.4 Comparison on Real data Set

Now, we will proceed to test our model using real-world data and evaluate its
performance. The dataset we are utilizing has been provided by Prof. Manu Kumar
Gupta and contains information from a company involved in delivering goods to
customers. A sample of this dataset can be seen in Table 5.3. By testing our model
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on real data, we aim to assess its effectiveness and applicability in practical delivery
scenarios. This will provide valuable insights into the model’s performance and its
potential for real-world deployment.

hub name customer id ofd date buyer lat buyer long Buyer pincode weight(Kg) rts wt(Kg) transaction time(mins) delivery slot start delivery slot end hub lat hub long
Central Delhi c-110005-0 2021-11-17 28.65 77.20 110005 375.26 0 10 4 PM 7 PM 28.657 77.21
Central Delhi c-110007-1 2021-11-17 28.67 77.20 110007 4.81 0 5 7 AM 10 AM 28.65 77.21
Central Delhi c-110002-2 2021-11-17 28.64 77.26 110002 248.46 0 10 4 PM 7 PM 28.65 77.21
Central Delhi c-110008-3 2021-11-17 28.67 77.156 110008 196.53 0 10 10 AM 1 PM 28.65 77.21
Central Delhi c-110009-4 2021-11-17 28.70 77.17 110009 63.66 0 7 4 PM 7 PM 28.65 77.21

Table 5.3: Sample Table.

In Table 5.3, we can observe various fields including the buyer’s latitude and
longitude, the weight of the product, the time slot for delivery, and the hub’s latitude
and longitude. In this dataset, there are a total of 50 customers. Since we have trained
a model for the Capacitated Vehicle Routing Problem, we will focus on utilizing the
buyer’s latitude, longitude, product weight, and the hub’s latitude and longitude. The
hub will act as the depot location for our routing problem.

To input these latitude and longitude coordinates into our model, we need to con-
vert them into x, y coordinates. For this purpose, we have employed the utm Python
library. This library facilitates the conversion of latitude and longitude coordinates
into x, y coordinates. By converting the coordinates, we can represent the loca-
tions in a standardized format suitable for inputting into our model. Importantly, the
utm library ensures that the distances between all points are accurately maintained,
especially if all coordinates belong to the same area.

Converting the latitude and longitude coordinates to x, y coordinates allows us to
effectively utilize the trained model for solving the routing problem in this real-world
dataset. After converting the latitude and longitude coordinates into x, y coordinates,
the next step is to normalize these coordinates to fit within a unit square, which can
be used as input for the model. To achieve this, we follow a two-step process.

Firstly, we subtract the minimum x-coordinate and minimum y-coordinate
from all the coordinates. This ensures that all points are shifted to lie after the origin
(0, 0).

Secondly, we divide all the points by the maximum distance between any
two points in the dataset. By doing this, we guarantee that all the points now fall
within the unit square (0, 0) to (1, 1). Importantly, this normalization step preserves
the relative distances between the points.
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By performing these operations, we obtain the input coordinates in a suit-
able format for the model. We can then apply the trained model to find the routes
for this problem. The resulting routes can be visualized in Figure 5.9, providing a
clear representation of the optimized paths for the delivery process.The total distance
travelled by the vehicle is 7.463 m and time taken to find these path is 3.296 sec

Figure 5.9: Route Generated using RL for real dataset

By providing the same input to OR Tools for solving the routing problem, we
obtain the resulting routes, which can be visualized in Figure 5.10. These routes
illustrate the optimized paths determined by the OR Tools approach for the given
problem.

In terms of performance metrics, the total distance traveled by the vehicles
using these routes is calculated to be 4.775 meters. Additionally, the time taken to
find these paths using OR Tools is reported to be 14.475 seconds.
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Figure 5.10: Route Generated using OR Tool for real dataset

Upon observation, it is evident that the distance traveled by the vehicles using the
OR Tools approach is less compared to the RL model. This suggests that OR Tools
may produce more optimized routes in terms of distance efficiency.

However, it is important to note that the RL model still performs reason-
ably well in terms of distance traveled. The difference in distances between the
two approaches may not be significant, indicating that the RL model is capable of
generating competitive routes.

One crucial aspect to consider is the time taken to find these routes. In
this regard, the RL model demonstrates a notable advantage over OR Tools, as it
significantly reduces the computational time required to obtain the solutions. This
time efficiency is a promising characteristic of RL-based approaches, as it allows for
faster decision-making and route optimization.
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