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Introduction

• Queueing Theory is useful to analyze mathematical nature of queues.

• Queueing Theory has applications in different areas:

– Electronics & Communication Engineering

– Computer Science & Engineering

– Transportation Engineering

– Industrial Engineering

• For the last few years several researchers are using concepts of game theory 

(especially cooperative game theory) to analyze multi-class queueing systems.

• Some of the works are Liu and Yu (2022) , Armony et al. (2021) , Yu et al. 

(2015), Anily and Haviv (2010).
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Basic concepts of Queueing Theory

• Scheduling Policy

• Priority Queues

• Preemptive vs Non-Preemptive priority
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Objective

• To determine fair scheduling policy using different solution concepts of the 

cooperative game in multi-class queues.

• First, we will model the Multi-class M/G/1 queueing systems as a cooperative 

game.

• Then we will find allocations for both the classes by using solution concepts of 

cooperative game theory, such as

• Shapley Value

• The Core

• Then we will find the scheduling policies which can assign those allocations 

fairly. 
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Game Theoretic Representation

• We are considering Multi-class M/G/1 queue.

• Let’s consider each class as a player in this cooperative game.

• We assume this is a TU game or v(𝜑) = 0

• We consider non-preemptive priority. 

• Let’s say, set of players, P = {1, 2,…, N}

• Now we will establish worth functions v(.) of  any player (i), any coalition (S) 

and the grand coalition (N) 

• Worth function of the grand coalition, v({N}) must follow Kleinrock’s 

Conservation law (Kleinrock, 1965) where, right hand side is independent of any 

scheduling policy 𝜋,

• σ𝑖=1
𝑁 𝜌𝑖𝑊𝑖

𝜋 = 
𝜌𝑊0

(1−𝜌)
. Here, 𝜌𝑖 is load factor of class i, 𝑊𝑖 is mean waiting time 

of class i and 𝑊0 = σ𝑖=1
𝑁 λ𝑖

2
[𝜎𝑖

2+
1

𝜇𝑖
2]
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• V({N}) = 
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𝜋]

𝑆 !
= 

𝜌𝑊0

(1−𝜌)
= R.H.S of Kleinrock’s conservation law

• V({N}) is independent of  scheduling policies.
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21)
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= 

𝜌𝑊0
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• 2-class game is convex

• The Core is non-empty

• The Core, C(P, v) = {(𝑥1, 𝑥2): 
𝜌1𝑊0

(1−𝜌1)
≤ 𝑥1 ≤

𝜌1𝑊0

(1−𝜌2)(1−𝜌)
; 𝑥1+ 𝑥2 = 

𝜌𝑊0

(1−𝜌)
}
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• If 𝜌1 > 𝜌2 then 𝜑1(v) > 𝜑2 (v)

• 𝜑1(v) + 𝜑2(v) = 
𝜌𝑊0

(1−𝜌)

• Shapley Value belongs to the Core
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• Every queue class are assigned a queue discipline parameter 𝑏𝑖

• Instantaneous dynamic priority, 𝑞𝑖(t) = (Delay) × 𝑏𝑖 , i = 1, 2, … , N

• Server selects the highest priority class
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1

𝛽
))
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1

𝛽
))
1{𝛽>1}

• From Gupta et al. (2020) and Mitrani, I., & Hine, J. H. (1977). Complete parameterized 

families of job scheduling strategies. Acta Informatica, 8(1), 61-73. we found 

completeness of DDP

• We found 𝛽𝑆ℎ𝑎𝑝𝑙𝑒𝑦 which can allocate 𝜑1
ˆ and 𝜑2

ˆ fairly

• 𝛽𝑆ℎ𝑎𝑝𝑙𝑒𝑦 = 
(2−𝜌)(1−𝜌1)

𝜌𝜌1+2(1−𝜌)
1{𝜌1≥𝜌2} +

𝜌𝜌2+2(1−𝜌)

(2−𝜌)(1−𝜌2)
1{𝜌1<𝜌2}
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• If 𝜌1 = 𝜌2 then 𝛽𝑆ℎ𝑎𝑝𝑙𝑒𝑦= 1. This implies FCFS scheduling policy

• If 𝜌1 > 𝜌2 then 0< 𝛽𝑆ℎ𝑎𝑝𝑙𝑒𝑦 <1. This implies that class 1 has higher dynamic 

priority than class 2

• If 𝜌2 > 𝜌1 then 1< 𝛽𝑆ℎ𝑎𝑝𝑙𝑒𝑦 < ∞. This implies that class 2 has higher dynamic 

priority than class 1

• At the extreme case when 𝜌1 → 1 then 𝛽𝑆ℎ𝑎𝑝𝑙𝑒𝑦 → 0 . This implies static high 

priority to class 1 

• At the extreme case when 𝜌2 → 1 then 𝛽𝑆ℎ𝑎𝑝𝑙𝑒𝑦 →∞ . This implies static high 

priority to class 2 
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Conclusion and Future Research

• To explore cooperative game theoretic solutions such as Shapley Values, The 

Core, Nucleolus for N-class game.

• To explore fair scheduling policy for N-class game.

• To design the game by considering other values of 𝛽 (except 0 and ∞)
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Thank You.


