INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

Cooperative Game Theoretic Models to Analyze Multi-class
Queueing Systems

(Anirban Mitra, Manu K. Gupta)
Department of Management Studies
Indian Institute of Technology Roorkee
N. Hemachandra
Industrial Engineering and Operations Research
Indian Institute of Technology Bombay
Game Theory and Applications
(GTA 2022)




Agenda

* Introduction

* Objective

« Game Theoretic Representation
« Methodology

* Results

« Conclusion and future research
» References

11 TROORKEE HE N




Introduction

II1TROORKEE RN N




Introduction

« (Game Theory is useful to analyze strategic interaction between rational agents.

11 TROORKEE HE N




Introduction

« (Game Theory is useful to analyze strategic interaction between rational agents.
« From Microeconomics to Engineering Sciences it has a lot of applications.

11 TROORKEE HE N




Introduction

« (Game Theory is useful to analyze strategic interaction between rational agents.
« From Microeconomics to Engineering Sciences it has a lot of applications.
« Some of the important applications of Game Theory:

11 TROORKEE HE N




Introduction

« (Game Theory is useful to analyze strategic interaction between rational agents.
« From Microeconomics to Engineering Sciences it has a lot of applications.

« Some of the important applications of Game Theory:
— Market Design

11 TROORKEE HE N




Introduction

« (Game Theory is useful to analyze strategic interaction between rational agents.
« From Microeconomics to Engineering Sciences it has a lot of applications.

« Some of the important applications of Game Theory:
— Market Design
— Evolutionary Biology

11 TROORKEE HE N




Introduction

« (Game Theory is useful to analyze strategic interaction between rational agents.
« From Microeconomics to Engineering Sciences it has a lot of applications.

« Some of the important applications of Game Theory:
— Market Design
— Evolutionary Biology
— Political Science

11 TROORKEE HE N




Introduction

« (Game Theory is useful to analyze strategic interaction between rational agents.
« From Microeconomics to Engineering Sciences it has a lot of applications.

« Some of the important applications of Game Theory:
— Market Design
— Evolutionary Biology
— Political Science
— Artificial Intelligence

11 TROORKEE HE N




Introduction

« (Game Theory is useful to analyze strategic interaction between rational agents.
« From Microeconomics to Engineering Sciences it has a lot of applications.

« Some of the important applications of Game Theory:
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Introduction

* Queueing Theory is useful to analyze mathematical nature of queues.

* Queueing Theory has applications in different areas:
— Electronics & Communication Engineering
— Computer Science & Engineering
— Transportation Engineering
— Industrial Engineering

« For the last few years several researchers are using concepts of game theory
(especially cooperative game theory) to analyze multi-class queueing systems.

« Some of the works are Liu and Yu (2022) , Armony et al. (2021) , Yu et al.
(2015), Anily and Haviv (2010).
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* Arrival rate
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* Load factor
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Objective

« To determine fair scheduling policy using different solution concepts of the
cooperative game in multi-class queues.

 First, we will model the Multi-class M/G/1 queueing systems as a cooperative
game.

« Then we will find allocations for both the classes by using solution concepts of
cooperative game theory, such as

« Shapley Value
 The Core

« Then we will find the scheduling policies which can assign those allocations
fairly.
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Game Theoretic Representation

« We are considering Multi-class M/G/1 queue.

* Let’s consider each class as a player in this cooperative game.
« We assume thisisa TU game or v(p) =0

« We consider non-preemptive priority.

* Let’s say, set of players, P = {1, 2,..., N}

« Now we will establish worth functions v(.) of any player (i), any coalition (S)
and the grand coalition (N)

* Worth function of the grand coalition, v({N}) must follow Kleinrock s
Conservation law (Kleinrock, 1965) where, right hand side is independent of any
scheduling policy m,

« YN piWT= % . Here, p; is load factor of class i, W; is mean waiting time
of class i and W, = Zliv=1% [67+—]
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Proposed Game

» Worth function of player i, v({i}) = (0; Xren, W")

« Worth function of coalition S, v({S}) = Zies|Pi Zmens Wi | ScPp
|S|!
« Worth function of the grand coalition, v({N}) = Zienlp iéﬁm Wil

o V({N}) ZlEN Pi ZTL’EMW ] S WO

= R.H.S of Kleinrock s conservation law
N ~ (1-p)

« V({N}) is independent of scheduling policies.
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« Worth function of the grand coalition {12},

12 4 11,21 12 4 11,21
e v({12 zpl(W1 +WE)+po (W 2+ W3 ): pWo
({12 . o4,

« 2-class game is convex

« The Core is non-empty

. pL W p1 Wo .
° — . < <
The Core, C(P, v) = {(x4, x5) 1oy SX1S 5051

T X2 = 1y
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 Shapley value of class 1, ¢4(v) =

Wop2[pp1+2(1—-p)]
2(1-p1)(A-p2)(1-p)

» Shapley value of class 2, @, (V) =

* Ifp1 > pythen ¢1(v) > @3 (V)

P Wo
(1-p)

* @1(V) + @a(v) =

« Shapley Value belongs to the Core
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Delay Dependent Priority (DDP)

« Every queue class are assigned a queue discipline parameter b;

 Instantaneous dynamic priority, g;(t) = (Delay) X b; ,i=1, 2, ..., N

« Server selects the highest priority class
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«  We found gSharley which can allocate ¢, and ¢, fairly
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Conclusion and Future Research

« To explore cooperative game theoretic solutions such as Shapley Values, The
Core, Nucleolus for N-class game.

« To explore fair scheduling policy for N-class game.

 To design the game by considering other values of 8 (except 0 and oo)
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