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Motivation



Linear Regression

• Consider a linear function g : Rd → R, given by g(x) = xTµ

• µ ∈ Rd is unknown.

• Given training data (x1, y1), · · · , (xn, yn) ∈ D ⊆ Rd × R.

• yi = g(xi ) + εi with εi ∼ N (0, σ2)

• Obtain the least square estimate µ̂ of µ by minimizing training error

• Testing points are z1, z2, · · · , zk ∈ D

• Mean square testing error: 1
k

k∑
i=1

E(ĝ(zi )− g(zi ))2

Testing points may be random or chosen by an adversary.
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Linear Regression: Adversarial Version

• The learner chooses d training points x1, · · · , xd ∈ D.

• Learner can query the unknown function once at each point.

• Adversary chooses the following:

- k and a set of testing points z1, · · · , zk .

- The noise variance σ2
i that corrupts each training point xi

- Noise is subject to
d∑

i=1

σ2
i ≤ σ2

• Learner minimizes the mean square testing error.

• What are the best d training points?

• Adversary chooses the worst case set of testing points.

• Minimize the worst case mean square testing error.

• Barycentric spanner

Details of the proof
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Barycentric Spanners

Consider D ⊆ Rd , a barycentric spanner for D is a set of vectors

{x1, x2, · · · , xd} ⊆ D, such that ∀ z ∈ D, ∃ c ∈ Rd , and

z = c1x1 + c2x2 + · · · cnxn,

for ci ∈ [−1, 1] or ‖c‖∞ ≤ 1. And C-approximate barycentric spanner if

‖c‖∞ ≤ C for some C > 1.

• Applications: Online bandit linear optimization1,2,3, repeated

decision making of approximable functions4, John ellipsoid5.

1Varsha Dani, Sham M Kakade, and Thomas P Hayes. “The price of bandit information for online optimization”. In: Advances in Neural

Information Processing Systems. 2008, pp. 345–352.

2Peter L Bartlett et al. “High-probability regret bounds for bandit online linear optimization”. In: (2008).

3Varsha Dani, Thomas P Hayes, and Sham M Kakade. “Stochastic linear optimization under bandit feedback”. In: (2008).

4Sham M Kakade, Adam Tauman Kalai, and Katrina Ligett. “Playing games with approximation algorithms”. In: SIAM Journal on

Computing 39.3 (2009), pp. 1088–1106.

5Sébastien Bubeck, Nicolo Cesa-Bianchi, and Sham M Kakade. “Towards minimax policies for online linear optimization with bandit

feedback”. In: Conference on Learning Theory. 2012, pp. 1–14.
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Random Testing Points

Figure 1: Linear regression with training points as barycentric spanner (left) vs

equidistant points (right) in a 9th degree polynomial.

Performance measure

Root mean square error (RMSE) at testing points:

• 10 random points in the range of interest.

• 1000 equidistant points.
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RMSE comparison

Training ↓
Testing →

10 Random points 6 1000 equidistant points

Barycentric spanner 0.0090 0.00939

Equidistant points 0.036 0.0241

10 Random points 7 0.3169 0.2157

Table 1: RMSE at different testing points averaged over 500 seeds for 9th

degree polynomial.

• Best RMSE at barycentric training points.

• Holds for different degrees.

6Testing points: 2.68, 3.84, 2.12, 3.96, 3.28, 3.76, 2.56, 2.76, 3.88, 2

7Training points: 2.72, 2.64, 2.12, 2.04, 3.44, 2.96, 2.99, 3.96, 2.24, 3.76
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Dynamic pricing

• Price for any given item on Amazon.com changes every 10 minutes8.

• Prices subject to fluctuations depending on background algorithms.

8https://www.businessinsider.com/amazon-price-changes-2018-8?IR=T
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Dynamic pricing

• Dynamic pricing in brick and mortar stores using electronic price tag.
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Dynamic pricing

Update
Belief

for
Simulator

Price
Optimization

on
Updated

Belief

Simulator

Optimization
Framework
1. Gradient Descent
2. Global Optimal

Price Revenue

A data pair
of price and revenue

Updated
simulator
estimates

Learning
Framework
1. Bayesian linear regression
2. Mean Square Error

• Goal: Learn the optimal price in minimum number of steps

• Balance between optimization and learning.

• Use barycentric spanners for the initialization of Baysian updates.
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Model Description

Consider the demand function (linear9 in price)

d = α− βp + γ + ε, where ε ∼ N (0, σ2). (1)

Revenue = d × p = w0 + w1p + w2p
2 + ε

The general form of revenue:

r = f (p) + ε (2)

where f (p) = w0 +w1p +w2p
2 + · · ·+wnp

n is some n degree polynomial.

• Motivation for learning an unknown polynomial

• Barycentric spanner for polynomial feature set

Dn = {p := (1, p, p2, · · · , pn), p ∈ [pmin, pmax ]} for n ≥ 1.

9N Bora Keskin and Assaf Zeevi. “Dynamic pricing with an unknown demand model: Asymptotically optimal semi-myopic policies”. In:

Operations Research 62.5 (2014), pp. 1142–1167.
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Model Flow

Estimate
f̂ (p)

with new
data pair

Price
Optimization

find p∗ for
f̂ (p)

Simulator
r = f (p) + ε

Optimization
Framework
1. Gradient Descent
2. Global Optimal

Price(p) Revenue(r)

A data pair
(p, r)

Current best
estimate of

f̂ (p)

Learning
Framework
1. Bayesian linear regression
2. Mean Square Error

• Optimization framework

• Global optimal: By using the roots of a polynomial

• Gradient descent: Might get stuck in local optima
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Learning Framework: Bayesian Linear Regression

• Assume a conjugate prior for weight vectors w of f (p).

• Let prior w ∼ N (µ,A) and error ε ∼ N (0, σ2)

• Using Bayes theorem, posterior turns out to be multivariate

Gaussian with the following updates.

A−1
n+1 = A−1

n +
pn+1pn+1

T

σ2

A−1
n+1µn+1 = A−1

n µn +
rn+1pn+1

σ2

Estimate
f̂ (p)

with new
data pair

A data pair
(p, r)

Current best
estimate of
f̂ (p)

Learning
Framework
1. Bayesian linear regression
2. Mean Square Error

where pi = [1, p, p2, · · · , pn] in ith iteration.

Performance

Regret Rt = µ̂Tp∗best − simulator(p∗t ).
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Thompson Sampling for dynamic pricing

Algorithm 1: BLR-TS(n, µ̂)

Initialization: Set D = {p := (1, p, p2, · · · , pn), p ∈ [0, 1]};
1. Find barycentric spanner b1, b2, · · · , bn for D;

2. Set A−1
0 =

n∑
i=1

bib
T
i and sample w0 ∼ N (µ0 = 0,A0);

3. Set f0(p) = wT
0 p and find p∗0 = arg max

0≤p≤1
f0(p);

4. Set p0 = [1, p∗0 , (p
∗
0 )2, · · · (p∗0 )n], t = 0 and Ct = 0;

while t ≤ total iterations do

Simulation: rt ← simulator(p∗t );

Learning : A−1
t+1 = A−1

t + ptpt
T

σ2 ,A−1
t+1µt+1 = A−1

t µt + rtpt

σ2 ;

Sampling : wt+1 ∼ N (µt+1,At+1) and set ft+1(p) = wT
t+1p;

Optimization: Find p∗t+1 = arg max
0≤p≤1

ft+1(p) ;

Regret: Rt = µ̂Tp∗best − simulator(p∗t ), Ct = Ct + Rt ;

Set t ← t + 1;

end
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Performance comparison

• Consider a fourth degree

revenue curve r = −p4 +

22p3− 165p2 + 480p− 150 + ε.

• Two choices for initialization:

1. A−1
0 = I .

2. A−1
0 is obtained using

barycentric spanner as in

Algorithm.

• Cumulative regrets averaged

over 10 sample path.

Figure 2: Regret comparison for

identity vs barycentric spanner

initialization.

Barycentric spanner leads to much lower regret.

14



Robustness check - I

Figure 3: Regret comparison for a 2nd degree polynomial (left) and for

2-approximate barycentric spanner (right).

• Different polynomial degrees.

• Approximate barycentric spanner.
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Robustness check - II

Figure 4: Regret comparison for learning a 4nd degree polynomial with 7th

degree model (left) and for radial basis function (right) 100 ∗ e−(x−5)2

.

• Different degree for the polynomial vs model.

• Non-polynomial models - radial basis function.
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Other learning methods

• Iterated least square (ILS) by minimizing the mean square error.

• Constrained iterated least square (CILS)10.

• In each period t, CILS with threshold parameter k charges the price:

pt =

p̄t−1 + sgn(δt)kt
−1/4 if |δt | < kt−1/4

ILS price otherwise.

• CILS induces exploration.

10N Bora Keskin and Assaf Zeevi. “Dynamic pricing with an unknown demand model: Asymptotically optimal semi-myopic policies”. In:

Operations Research 62.5 (2014), pp. 1142–1167.
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Expected regret comparison

Figure 5: Expected regret under different learning methods

• Thompson sampling results in the best performance.

• Drawback: sampling despite learning the true optimal.
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Stopping Criterion

• Include a stopping criterion for sampling.

• Stopping criterion based on moving average of previous prices.

• BLR with a stopping criterion (partial greedy) gives the best regret.

• Parameter settings: Linear demand model11

Figure 6: Expected regret under different learning methods

11N Bora Keskin and Assaf Zeevi. “Dynamic pricing with an unknown demand model: Asymptotically optimal semi-myopic policies”. In:

Operations Research 62.5 (2014), pp. 1142–1167.

19



Characterization of barycentric

spanner



State of art

• The only known algorithm12 to compute C -approximate barycentric

spanner for a general compact set D ⊂ Rd

• O(d2 logC d) calls to an optimization oracle for performing linear

optimization over D.

• Complexity diverges as C approaches 1.

• We are interested in the polynomial feature set Dn for some n ≥ 1:

Dn := {[1, p, p2, · · · pn] : p ∈ [pmin, pmax]}

Main result

Two different characterizations of barycentric spanner for set Dn.

12Baruch Awerbuch and Robert Kleinberg. “Online linear optimization and adaptive routing”. In: Journal of Computer and System

Sciences 74.1 (2008), pp. 97–114.
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Characterization of barycentric spanner

Suppose p ∈ Rn+1 is such that pmin ≤ p1 ≤ · · · ≤ pn+1 ≤ pmax and

fn(p) = [1, p, p2, . . . , pn]T. Then, the following are equivalent:

1. The set {fn(p1), . . . , fn(pn+1)} ⊂ Dn is a barycentric spanner for Dn.

2. The vector p satisfies pmin = p1 < p2 · · · < pn+1 = pmax and∑
1≤j≤n+1,

‘j 6=i

1

pi − pj
= 0, i = 2, . . . , n. (3)

First characterization

Barycentric spanner for set Dn as a set of non-linear equations.
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The following are equivalent:

1. The set {fn(p1), . . . , fn(pn+1)} ⊂ Dn is a barycentric spanner for Dn.

2. The vector p is the unique global solution of the optimization

problem

max
w∈Rn+1

pmin=w1<···<wn+1=pmax

ln | detV (w)|. (4)

where V (w) := [fn(w1), . . . , fn(wn+1)] is the (n + 1)× (n + 1)

Vandermonde matrix formed from the elements of w.

Second characterization

Barycentric spanner for set Dn as a convex optimization problem.

Proof of characterization.
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Major Steps

• The determinant of the Vandermonde matrix V (p) equals

det(V (p)) =
∏

1≤i<j≤n+1

(pj − pi ). (5)

• First order conditions for optimization.

• If pi 6= pj ∀ i 6= j , Then c1, . . . , cn+1 ∈ R satisfy

c1fn(p1) + · · ·+ cn+1fn(pn+1) = fn(s) (6)

iff ci is the ith Lagrange basis polynomial {p1, p2, . . . , pn+1} given by

li (s,p) :=

∏
j 6=i

(s − pj)∏
j 6=i

(pi − pj)
(7)
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Nature of the solution

• The set Dn has a unique barycentric spanner.

• Can be found by either of the following methods:

• Non-linear equations.

• Convex optimization problem.

• Symmetric solution.

• Can be exploited for faster computation.

• Shift and scale property.

• Only need to compute the barycentric spanner for canonical case i.e

interval [0,1].
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Empirical Comparison of Run Times

n
A-K13 Non linear equations Convex optimization

C=1 C=2 C=5 Full Reduced Full Reduced

2 0.097 0.097 0.097 0.0002 0.00003 0.0209 0.0154

5 4.537 0.372 0.372 0.0007 0.0004 0.0713 0.0478

10 35.185 2.891 2.698 0.0081 0.0025 0.2296 0.1517

13 53.752 5.537 5.467 0.0158 0.0038 0.3678 0.2087

15 65.656 8.163 7.937 0.0316 0.0081 0.4853 0.2691

20 115.45 19.13 18.93 0.0793 0.0241 0.9198 0.4967

22 NA NA NA 0.1073 0.0351 1.1172 0.6056

Table 2: Time in seconds for computing a barycentric spanner

• A-K algorithm is implemented in an efficient way.

13Baruch Awerbuch and Robert Kleinberg. “Online linear optimization and adaptive routing”. In: Journal of Computer and System

Sciences 74.1 (2008), pp. 97–114.
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Time to compute barycentric spanner for higher degree

n
Non linear equations Convex optimization

Full Reduced Full Reduced

25 0.206 0.068 1.933 0.804

30 0.415 0.099 2.126 1.278

45 2.305 0.377 4.656 2.527

60 6.985 1.534 9.618 5.975

80 24.676 3.299 15.636 8.196

Table 3: Time in seconds to compute barycentric spanner for higher degrees n.

Scalability of our approach where A-K algorithm fails.

26



Summary

• A characterization of the barycentric spanner.

• Univariate polynomial feature set.

• Motivation

• Linear regression.

• Dynamic pricing.

• Properties of barycentric spanner

• Symmetry and affine transformation.

• Usage of the barycentric spanner for initializing covariance updates

in Thompson sampling.
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Work in progress

• Extend the results on finding barycentric spanner for multi-variate

polynomials.

• Dynamic pricing.

• Include additional features such as seasonality etc.

• To cater non-stationary demand.

• Theoretical guarantee in terms of bounds.

• Try bandit algorithms.

• Performance of explore and commit algorithm

• Connection with volumetric spanner.
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Thank you!

manukumar.gupta@tcs.com
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Proof of adversarial linear regression

1

k

k∑
i=1

E(ĝ(zi )− g(zi ))2 =
σ2

k
‖X−1Z‖2

F (8)

1

k

k∑
i=1

E(ĝ(zi )− g(zi ))2 =
1

k

k∑
j=1

[
σ2

1(eT1 X−1zj)
2 + · · ·+ σ2

d(eT1 X−1zj)
2
]

(9)

The adversary can ensure the worst case mean-square error for a given

choice of X by setting k = 1.
Back to Linear Regression.
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Proof of barycentric spanner characterization

Let s ∈ [pmin, pmax] and suppose p1, . . . , pn+1 ∈ [pmin, pmax] are such that

pi 6= pj for all i 6= j . Then c1, . . . , cn+1 ∈ satisfy

c1fn(p1) + · · ·+ cn+1fn(pn+1) = fn(s) (10)

if and only if ci = li (s,p) for each i = 1, . . . , n + 1, where

p = [p1, . . . , pn+1]T, and li (·,p) is the ith Lagrange basis polynomial for

the points {p1, p2, . . . , pn+1} given by

li (s,p) :=

∏
j 6=i

(s − pj)∏
j 6=i

(pi − pj)
(11)

∂l1(s,p)

∂s

∣∣∣∣
s=p1

=
∑
j 6=1

1

p1 − pj
< 0. (12)

Back to BS characterization.
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