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Motivation

e Linear regression
e Thompson sampling for dynamic pricing

Current state of art

e Approximate barycentric spanner

Barycentric spanner characterization

e Faster and efficient
e Exact barycentric spanner

Future work



Motivation



Linear Regression

Consider a linear function g : RY — R, given by g(x) = x"

u € R? is unknown.

Given training data (xi,y1), -+, (Xn, ¥n) € D CRY x R.
yi = g(x;) + € with ¢; ~ N(0,0?)

Obtain the least square estimate i of p by minimizing training error

Testing points are z1, 25, ,zx € D

K
e Mean square testing error: + > E(g(z) — g(z))?
i=1

Testing points may be random or chosen by an adversary.




Linear Regression: Adversarial Version

e The learner chooses d training points xi,- -+ , x4 € D.
e Learner can query the unknown function once at each point.
Adversary chooses the following:

- k and a set of testing points zi, - - , zk.

- The noise variance o? that corrupts each training point x;
d
- Noise is subject to 3 07 < o2
i=1
e | earner minimizes the mean square testing error.

What are the best d training points?

e Adversary chooses the worst case set of testing points.
e Minimize the worst case mean square testing error.

e Barycentric spanner

Details of the proof



Barycentric Spanners

Consider D C RY, a barycentric spanner for D is a set of vectors
{x1,%2, -+ , x4} € D, such that V z € D, 3 c € RY, and

Z=CX1+ CXo+ -+ CpXp,

for ¢; € [-1,1] or ||c/lcc < 1. And C-approximate barycentric spanner if
llc]loo < C for some C > 1.

e Applications: Online bandit linear optimization!'?:3, repeated
decision making of approximable functions*, John ellipsoid®.

1Varsha Dani, Sham M Kakade, and Thomas P Hayes. “The price of bandit information for online optimization” . In: Advances in Neural
Information Processing Systems. 2008, pp. 345-352.

2Peter L Bartlett et al. “High-probability regret bounds for bandit online linear optimization”. In: (2008).
3Varsha Dani, Thomas P Hayes, and Sham M Kakade. “Stochastic linear optimization under bandit feedback”. In: (2008)

4Sham M Kakade, Adam Tauman Kalai, and Katrina Ligett. "Playing games with approximation algorithms”. In: SIAM Journal on
Computing 39.3 (2009), pp. 1088-1106.

5Sébastien Bubeck, Nicolo Cesa-Bianchi, and Sham M Kakade. “Towards minimax policies for online linear optimization with bandit
feedback”. In: Conference on Learning Theory. 2012, pp. 1-14.



Random Testing Points
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Figure 1: Linear regression with training points as barycentric spanner (left) vs
equidistant points (right) in a 9th degree polynomial.

Performance measure

Root mean square error (RMSE) at testing points:
e 10 random points in the range of interest.

e 1000 equidistant points.




RMSE comparison

- Testing = | 15 Random points © | 1000 equidistant points
Training |
Barycentric spanner 0.0090 0.00939
Equidistant points 0.036 0.0241
10 Random points ’ 0.3169 0.2157

Table 1: RMSE at different testing points averaged over 500 seeds for 9th
degree polynomial.

e Best RMSE at barycentric training points.
e Holds for different degrees.

6Tesv:ing points: 2.68, 3.84, 2.12, 3.96, 3.28, 3.76, 2.56, 2.76, 3.88, 2
7Train'mg points: 2.72, 2.64, 2.12, 2.04, 3.44, 2.96, 2.99, 3.96, 2.24, 3.76



Dynamic pricing

AwDigitalPulse

e Price for any given item on Amazon.com changes every 10 minutes®.

e Prices subject to fluctuations depending on background algorithms.

8https://www.businessinsider.con/amazon-price- changes-2018-8?IR=T


https://www.businessinsider.com/amazon-price-changes-2018-8?IR=T

e Dynamic pricing in brick and mortar stores using electronic price tag.



Dynamic pricing

Revenue

A data pair
of price and revenue

- Updated Update
Price ¢ simulator Belief
: Optimization I estimates for
o°3 < . 8 %% i
L RO on g : Simulator : r.,, Learning

Optimization  » : Upda.ted G . A Framework
Framework Belief : 8 1. Bayesian linear regression
1. Gradient Descent  : B 2. Mean Square Error
2. Global Optimal C S T

e Goal: Learn the optimal price in minimum number of steps

e Balance between optimization and learning.

e Use barycentric spanners for the initialization of Baysian updates.



Model Description

Consider the demand function (linear® in price)
d=a—fBp+~v+e, where e ~N(0,0?). (1)
Revenue = d X p = wp 4+ wip + wap® + €
The general form of revenue:
r=f(p)+e (2)
where f(p) = wo + wip+ wop?+- - -+ w,p" is some n degree polynomial.

e Motivation for learning an unknown polynomial

e Barycentric spanner for polynomial feature set
Dh=A{p:=(1,p,p% - ,P"), P € [Pmin: Pmax]} for n > 1.

9N Bora Keskin and Assaf Zeevi. “Dynamic pricing with an unknown demand model: Asymptotically optimal semi-myopic policies”. In
Operations Research 62.5 (2014), pp. 1142-1167.
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Model Flow

Optimization L"“

Framework

1. Gradient Descent

2. Global Optimal

Price(p) Revenue(r)

Simulator
r=f(p)+e

A data pair
(p,r)
: Current best : ]

. estimate of  : Estimate

e SRCEEN G :

. Optimization <+ with new i,
find p* for data pair
f(p)

e Optimization framework

e Global optimal: By using the roots of a polynomial
e Gradient descent: Might get stuck in local optima

Learning

'2 Framework

1. Bayesian linear regression
2. Mean Square Error

11



Learning Framework: Bayesian Linear Regression

e Assume a conjugate prior for weight vectors w of f(p).

e Let prior w ~ N (p, A) and error € ~ N(0, o)

e Using Bayes theorem, posterior turns out to be multivariate
Gaussian with the following updates.

-1 — Pn+1Pn+1
1 n n ir
A 1= A+ — fpéj)‘apa

Current best !

estimate of Estimate
f(p) g #(p) g
with new RN
P T e ) B i R (R e
n+1/¢n+1 = A, HMn + D) 1. Bayesian linear regression
v AR i B M Srer B
where p; = [1, p, p?,- -+, p"] in ith iteration.

Performance

Regret R. = i p}.., — simulator(p;).
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Thompson Sampling for dynamic pricing

Algorithm 1: BLR-TS(n, f1)

Initialization: Set D = {p := (1,p,p?,---,p"),p € [0,1]};
1. Find barycentric spanner by, by, - -- , b, for D;
n
2. Set Ayt =" b;b] and sample wo ~ N (o = 0, Ag);
i=1
3. Set fo(p) = w{ p and find p; = arg max fo(p);
0<p<1
4. Set po = [1,p5,(p3)% - (pg)"], t =0 and C; = 0;
while t < total_iterations do
Simulation: r; <— simulator(p;);

. oa—1 _ aA—1 pepe | -1 _ a1 P .
Learning: A; 5 = Ay + B Al e = Ar e + 53
Sampling: wei1 ~ N (pte+1, Ae1) and set fri1(p) = w/l ,p;
Optimization: Find p; , = arg 02;?%(1 frv1(p) ;

Regret: R, = ji” p}... — simulator(p}), C; = C; + Re;
Sett«+ t+1;

end
13




Performance comparison
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Barycentric spanner leads to much lower regret.
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Robustness check - |
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Figure 3: Regret comparison for a 2nd degree polynomial (left) and for
2-approximate barycentric spanner (right).

e Different polynomial degrees.

e Approximate barycentric spanner.
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Robustness check - I
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Figure 4: Regret comparison for learning a 4nd degree polynomial with 7th
degree model (left) and for radial basis function (right) 100 e~ (=5,

e Different degree for the polynomial vs model.

e Non-polynomial models - radial basis function.
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Other learning methods

e lterated least square (ILS) by minimizing the mean square error.
e Constrained iterated least square (CILS)°.

e In each period t, CILS with threshold parameter k charges the price:

Be_1 + sgn(de)kt V4 if |6,] < kt /4

ILS price otherwise.

e CILS induces exploration.

10N Bora Keskin and Assaf Zeevi. “Dynamic pricing with an unknown demand model: Asymptotically optimal semi-myopic policies”. In
Operations Research 62.5 (2014), pp. 1142-1167.

17



Expected regret comparison
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Figure 5: Expected regret under different learning methods

e Thompson sampling results in the best performance.

e Drawback: sampling despite learning the true optimal.

18



Stopping Criterion

e Include a stopping criterion for sampling.

Stopping criterion based on moving average of previous prices.
BLR with a stopping criterion (partial greedy) gives the best regret.
Parameter settings: Linear demand model'?
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Figure 6: Expected regret under different learning methods

1IN Bora Keskin and Assaf Zeevi. “Dynamic pricing with an unknown demand model: Asymptotically optimal semi-myopic policies”. In
Operations Research 62.5 (2014), pp. 1142-1167.
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Characterization of barycentric
spanner




State of art

e The only known algorithm®? to compute C-approximate barycentric
spanner for a general compact set D C RY

e O(d?logc d) calls to an optimization oracle for performing linear
optimization over D.

e Complexity diverges as C approaches 1.

e We are interested in the polynomial feature set D, for some n > 1:

D= {[lapap2a o pn] ‘pEe [Pmimpmax]}

Two different characterizations of barycentric spanner for set D,,.

1%Baruch Awerbuch and Robert Kleinberg. “Online linear optimization and adaptive routing” . In: Journal of Computer and System
Sciences 74.1 (2008), pp. 97-114.

20



Characterization of barycentric spanner

Suppose p € R™1 is such that pmin < p1 < -+ - < Pn+1 < Pmax and

fa(p) = [1,p, p%, ..., p"]T. Then, the following are equivalent:
1. The set {fy(p1),- .-, fa(pni1)} C Dy is a barycentric spanner for D,,.
2. The vector p satisfies pmin = p1 < P2+ < Pnt1 = Pmax and

> ! =0,i=2,...,n (3)

1<j<nts, PP P
T

]

First characterization

Barycentric spanner for set D, as a set of non-linear equations.

21



The following are equivalent:

1. The set {fo(p1),...,fa(pn+1)} C D, is a barycentric spanner for D,,.

2. The vector p is the unique global solution of the optimization

problem
max In|det V(w)|. (4)

WGR"‘ 1l
Prmin=w1 <-*+ < Wpt1=Pmax

where V(w) := [f(w1), ..., fo(Wns1)] is the (n+ 1) x (n+ 1)
Vandermonde matrix formed from the elements of w.

Second characterization

Barycentric spanner for set D, as a convex optimization problem.

22



Major Steps

e The determinant of the Vandermonde matrix V(p) equals

det(V(p)) = [[ (pi—p) (5)

1<i<j<ntl
e First order conditions for optimization.

o If pj#pjVi#j, Then ci,...,crr1 € R satisfy

afa(p1) + - + Cor1fa(Pri1) = fals) (6)

iff ¢; is the ith Lagrange basis polynomial {p1, p2,. .., pni1} given by

.1;['(5 )
/,'(5, p) = W (7)

23



ure of the solution

The set D, has a unique barycentric spanner.

Can be found by either of the following methods:

e Non-linear equations.
e Convex optimization problem.
e Symmetric solution.
e Can be exploited for faster computation.
Shift and scale property.
e Only need to compute the barycentric spanner for canonical case i.e
interval [0,1].

24



Empirical Comparison of Run Times

A-K13 Non linear equations | Convex optimization
C=1 C=2 | C=5 Full Reduced Full Reduced
2 | 0.097 | 0.097 | 0.097 | 0.0002 0.00003 0.0209 0.0154
4537 | 0.372 | 0.372 | 0.0007 0.0004 0.0713 0.0478
10 | 35.185 | 2.891 | 2.698 | 0.0081 0.0025 0.2296 0.1517
13 | 53.752 | 5.537 | 5.467 | 0.0158 0.0038 0.3678 0.2087
15 | 65.656 | 8.163 | 7.937 | 0.0316 0.0081 0.4853 0.2691
20 | 115.45 | 19.13 | 18.93 | 0.0793 0.0241 0.9198 0.4967
22 NA NA NA | 0.1073 0.0351 1.1172 0.6056

Table 2: Time in seconds for computing a barycentric spanner

e A-K algorithm is implemented in an efficient way.

13Baruch Awerbuch and Robert Kleinberg. “Online linear optimization and adaptive routing” . In: Journal of Computer and System
Sciences 74.1 (2008), pp. 97-114.
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Time to compute barycentric spanner for higher degree

Non linear equations | Convex optimization
Full Reduced Full Reduced
25 | 0.206 0.068 1.933 0.804
30 | 0.415 0.099 2.126 1.278
45 | 2.305 0.377 4.656 2.527
60 | 6.985 1.534 9.618 5.975
80 | 24.676 3.299 15.636 8.196

n

Table 3: Time in seconds to compute barycentric spanner for higher degrees n.

Scalability of our approach where A-K algorithm fails.

26



e A characterization of the barycentric spanner.
e Univariate polynomial feature set.

Motivation

e Linear regression.
e Dynamic pricing.

Properties of barycentric spanner

e Symmetry and affine transformation.

Usage of the barycentric spanner for initializing covariance updates
in Thompson sampling.

27



Work in progress

e Extend the results on finding barycentric spanner for multi-variate
polynomials.
e Dynamic pricing.
e Include additional features such as seasonality etc.

e To cater non-stationary demand.
Theoretical guarantee in terms of bounds.

Try bandit algorithms.
Performance of explore and commit algorithm

e Connection with volumetric spanner.

28
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Proof of adversarial linear regression

k 2
> B(e(a) - g(@) = TIX 2R (8)

k
> E(@(z) - g(2)7 = % > [oi(el Xz + -+ + od(e] X'z)]
(9)

The adversary can ensure the worst case mean-square error for a given

choice of X by setting k = 1.

29



Proof of barycentric spanner characterization

Let s € [Pmin, Pmax] and suppose p1, ..., Ppi1 € [Pmins Pmax] are such that
pi # pj for all i # j. Then ¢1,..., chy1 € satisfy

afa(pr) + - + cnrifa(pPat1) = fa(s) (10)

if and only if ¢; = (s, p) for each i =1,...,n+ 1, where
p=[p1,.-.,pnr1]t, and [;(-,p) is the ith Lagrange basis polynomial for
the points {p1, p2, ..., pPnt1} given by

_1;[_(5 - pj)
/,'(S,p) = m (11)
J#i
8/1((;; Pl _ ) Pp—] (12)

s=m A P1 — Pj

30
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